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Abstract

This research is motivated by the recent developments in the Internet Engineering

Task Force (IETF) to support seamless integration of moving networks deployed in

vehicles to the global Internet. The effort, known as Network Mobility (NEMO),

paves the way to support high-speed Internet access in mass transit systems, e.g.

trains, buses, ferries, and planes, through the use of on-board mobile routers embed-

ded in the vehicle. One of the critical research challenges of this vision is to achieve

high-speed and reliable back-haul connectivity between the mobile router and the

rest of the Internet. The problem is particularly challenging due to the fact that a

mobile router must rely on wireless links with limited bandwidth and unpredictable

quality variations as the vehicle moves around. In this thesis, the multi-homing con-

cept is applied to approach the problem. With multi-homing, mobile router has

more than one connection to the Internet. This is achieved by connecting the mo-

bile router to a diverse array of wireless access technologies (e.g., GPRS, CDMA,

802.11, and 802.16) and/or a multiplicity of wireless service providers. While the

aggregation helps addressing the bandwidth problem, quality variation problem can

be mitigated by employing advanced traffic engineering techniques that dynamically

control inbound and outbound traffic over multiple connections. More specifically,

xvii



xviii

the thesis investigates traffic engineering solutions for mobile networks that can effec-

tively address the performance objectives, e.g. maximizing profit for mobile network

operator, guaranteeing quality of service for the users, and maintaining fair access to

the back-haul bandwidth. Traffic engineering solutions with three different levels of

control have been investigated. First, it is shown, using detailed computer simulation

of popular applications and networking protocols (e.g., File Transfer Protocol and

Transmission Control Protocol), that packet-level traffic engineering which makes de-

cisions of which Internet connection to use for each and every packet, leads to poor

system throughput. The main problem with packet-based traffic engineering stems

from the fact that in mobile environment where link bandwidths and delay can vary

significantly, packets using different connections may experience different delays caus-

ing unexpected arrivals at destinations. Second, a maximum utility flow-level traffic

engineering has been proposed that aims to maximize a utility function that accounts

for bandwidth utilization on the one hand, and fairness on the other. The proposed

solution is compared against previously proposed flow-level traffic engineering schemes

and shown to have better performance in terms of throughput and fairness. The third

traffic engineering proposal addresses the issue of maximizing operator’s profit when

different Internet connections have different charging rates, and guaranteeing per user

bandwidth through admission control. Finally, a new signaling protocol is designed

to allow the mobile router to control its inbound traffic.
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Chapter 1

Introduction

1.1 Background

Over the past decade, mobile wireless communications have enjoyed a phenomenal

success, with both voice and data communication services becoming indispensable for

an ever-growing number of people. This applies in particular to passengers on Public

Transport Vehicles (PTV), such as regular commuters in metropolitan areas or long-

distance travelers, for whom the ability to communicate and access information while

on the move is crucial to maintain productivity or provide entertainment during

travel. However, current PTVs do not provide communication support for the PTV

passengers; hence, mobile end users are restricted to simply connect via a wireless

link directly to the static infrastructure (e.g. a base station in a cellular system). As

a result, the communication abilities of mobile users are limited to accessing services

and applications that are common in the static world, such as telephone calls and

Internet access.

Recently, there are strong commercial [1–5] and research interests [6–9] in equip-

ping PTVs with high speed on-board Local Area Network (LAN) to provide Internet

1



2

GPRS

Satellite

UM TS

UM TS

Internet

Access netw ork coverage

O n-board netw ork
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Figure 1.1: On-board communication architecture

connectivity to its passengers. These on-board networks present a new Internet con-

nection paradigm for mobile users. To enjoy Internet services, passengers simply

connect their mobile telephones, laptops, or Personal Digital Assistant (PDA) to the

on-board Mobile Router (MR), which is connected to the Internet via wireless access

technologies. When the system is in transit, the mobility of the entire LAN is man-

aged transparently by the MR using an extension of mobile IP [10]. The on-board

network architecture is shown in Figure 1.1.

There are several advantages in the on-board connection paradigm:

• Single subscription - The on-board network architecture can be seen as an ex-

tension to the highly popular public hotspot model, where users are able to

enjoy Internet connectivity in public locations (e.g. cafes, airports, shopping

malls etc) with a wireless LAN card. Consequently, on-board network users can

enjoy extended Internet coverage in public vehicles without subscribing to other

wireless access technologies. Of course, users can still subscribe to other mobile

Internet services if they wish to use Internet services in other locations that are
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not covered by the static and on-board networks.

• Access technology independency - For users who only require Internet connec-

tivity in the static and on-board network coverage areas, they do not need to

worry about constantly upgrading their subscriptions and/or hardware due to

the continuing release of new wireless access technologies. With a single LAN

card, on-board network users can basically treat the on-board network as an

access black-box and leave the hardware upgrades to the on-board network

operator.

• Transparent mobility management - For on-board systems that implements a

network mobility protocol, such as the NEtwork MObility (NEMO) protocol [6],

the MR can handle the mobility management for the entire on-board network.

On-board users will be able to enjoy Internet without worrying about performing

mobility management for their connections.

• Efficient bandwidth usage - We can expect that passengers traveling together in

a PTV are likely to access the same popular content items such as news, travel

information, and entertainment etc. With an on-board LAN architecture, such

items can be cached in an on-board data server and then re-distributed to the

on-board users locally, instead of having users retrieve similar content over and

over again. Likewise, real-time streaming content (e.g. an Internet radio station

or Internet television channel) need only be transferred via the MR once, and

can then be multi-cast to the on-board users.

• On-demand wireless services - Not everyone will require Internet access at any

time or any location while they are on the move. Providing Internet coverage in
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PTVs will be enough for most users and on-board network providers can provide

on-demand wireless services like the current public hotspot models. This means

that users only need to pay for on-demand Internet access services and are not

tied up in paying expensive monthly subscriptions.

• Power consumption - In the on-board connection paradigm, the on-board user

devices need to communicate only locally rather than with a remote wide-area

network infrastructure. This translates to a significantly reduced power con-

sumption and consequently to a prolonged battery life.

1.2 Motivation

One of the major challenges for the MR is to handle the large amount of data traffic

routed between the on-board network and the Internet, since an on-board network

can carry from tens (e.g. buses) to hundreds (e.g. trains, planes) of passengers. As

the wireless access links are both bandwidth-limited and are less stable than fixed

access links, we proposed to use a technique called multi-homing, where the MR

is connected to the Internet via multiple wireless access technologies (e.g. GPRS,

UMTS, CDMA2000, WiMax, Satellite) and/or multiple service providers. There are

several benefits of multi-homing:

• Increased bandwidth - As wireless access technologies are typically bandwidth

limited, the on-board system can increase its aggregate access bandwidth by

connecting to the Internet via multiple access links. This is crucial for the

on-board network since it needs to handle large amount of data traffic for the

on-board users.
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• Ubiquitous Access - Multi-homing provides a larger wireless Internet service cov-

erage for the on-board system, since each wireless access network has different

coverage areas. This is because different wireless access technologies will have

different coverage sizes; and, even for networks with the same wireless access

technology, the coverage areas will not be the same as different operators will

have their own coverage planning strategies.

• Resilience to network disruptions - If the on-board network only relies on a

single wireless access link for Internet connectivity, the entire system will lose

connectivity whenever there is a link outage. This is particularly problematic

for wireless access links, since they tend to have stability issues especially when

the system is in transit. Thus, if the system is equipped with multiple access

interfaces, the system can divert traffic away from failed links to ensure that

Internet connectivity is preserved for the on-board users.

• Wider range of services - Since different access technologies have different per-

formance characteristics, a multi-homed system can provides a wider range of

Internet services to the passengers. For example, if the system only depends

on a single satellite link; which is characterized with high propagation delay;

the system may have difficulty in providing real-time streaming services for the

on-board users. Hence, equipping the MR with multiple access technologies

allow the system to serve the requirements for a wider range of applications.

Effective traffic engineering is critical for successful realization of multi-homing

in the on-board connection paradigm. In the context of on-board systems, we define

traffic engineering as the way in which the MR distributes the system data traffic
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among the multiple wireless access links. For the on-board network architecture;

where the entire network is on the move; the challenge with traffic engineering arises

from the fact that the mobile multi-homed system must be able to send and receive

large amount of user data traffic over the wireless access links. With the movement of

the network and the nature of wireless access technologies, the system will have more

dynamic link characteristics (i.e. bandwidth and delay) than static multi-homed

networks that depend on fixed-line access networks. To maximize the throughput

performance for the on-board users, the system needs to adapt to the bandwidth

variations in each access link. For the on-board network, we have identified two types

of bandwidth variations:

• Spatial variations - When the system is in transit, the set of available access

networks; i.e. the number of networks available; will not be constant since

there are spatial variations in the physical network coverage of each wireless

access network. For example, the coverage of a Wireless Metropolitan Area

Network (WMAN) access technology is highly unlikely to be able to match the

coverage of a satellite network due to the physical constraints of such access

technology. Also, even with the same access technology, the network service

providers have different deployment strategies and hence their coverage areas

will not be the same.

• Temporal variations - For each wireless access link, the actual bandwidth that

is available to the MR will exhibit temporal variations due to the contention

(for wireless resources) with other users in the same access network. Each ac-

cess network will have different set subscribers; hence, the temporal bandwidth

variations for each network will not be the same in each trip.
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To adapt to these network resource variations, the MR needs to perform dynamic

traffic engineering among the available wireless access networks. When the PTV

is in transit, the MR needs to know how to distribute the passengers’ data traffic

among the available network connections at different points of a trip. Given that

there are multiple links associated with the multi-homed systems, there are many

possible ways of distributing the data traffic among these interfaces. For example,

one algorithm may distribute the traffic in a way that maximizes the throughput of

the system, while another algorithm may distribute the traffic in a way that provides

a fair bandwidth allocation to the users’ data flows. This brings the need to study

the design of traffic engineering algorithms for the multi-homed on-board network

system, which is the main focus of this thesis. The aim of these algorithms is to

exhibit certain control over the way in which traffic engineering is performed by the

multi-homed on-board system. To compare the performance of the different traffic

engineering algorithms, we also identify the important metrics which needs to be

considered in traffic engineering algorithm design.

We have identified three possible types of traffic engineering schemes for the

mobile multi-homed networks architecture; namely, the user-based, flow-based ; and

packet-based traffic engineering schemes. The difference between these schemes lies

in the switching granularity that can be deployed in the multi-homed MR. In this

thesis, we will investigate and design traffic engineering solutions for each of these

traffic engineering schemes. The selection of traffic engineering scheme is a highly im-

portant design issue for the multi-homed on-board system; since as we will discover

in this thesis, not all of these traffic engineering schemes are suitable for the on-board

network and choosing an incorrect traffic engineering scheme will severely degrade
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the throughput performance of the users’ data flows.

1.3 Contributions

The contributions of this work can thus be summarized as follows:

• Firstly, we showed via detailed computer simulation of popular applications

and networking protocols (e.g., File Transfer Protocol (FTP) and Transmission

Control Protocol (TCP)), that packet-level traffic engineering which makes de-

cisions of which Internet connection to use for each and every packet, leads to

poor system throughput. The main problem with packet-based traffic engineer-

ing stems from the fact that in mobile environment where link bandwidths and

delay can vary significantly, packets using different connections may experience

different delays causing unexpected arrivals at destinations.

• Secondly, we proposed a set of maximum utility flow schedulers that aim to

maximize a utility function that accounts for bandwidth utilization on the one

hand, and fairness on the other. The proposed flow schedulers are compared

against previously proposed flow-level traffic engineering solutions and shown

to have better performance in terms of throughput and fairness.

• Thirdly, we proposed novel user distribution algorithms that aim to maxi-

mize the on-board system operator’s profit when different Internet connections

have different charging rates, and guaranteeing per-user bandwidth allocation

through admission control. We showed that having a prior knowledge on the

link bandwidth variations does not provide additional profit to the system, but

instead it allows the on-board network to limit the service disruption probability
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for the users.

• Finally, as the majority of users’ data traffic are in the downlink direction, we

designed the Multi-Homed Data Control Protocol (MH-DCP) that allows the

MR to exhibit traffic engineering control over the passengers’ downlink data

traffic. The protocol is specifically designed for both the user-based and flow-

based traffic engineering schemes.

1.4 Thesis organization

The rest of the thesis is organized as follow.

In the next chapter, we provide an in-depth background tutorial on multi-homing

systems, and review the past research in the different types of multi-homed systems.

We also present a thorough classification on the different types of multi-homed sys-

tems and compare their characteristics.

Chapter 3 presents the Network Mobility (NEMO) multi-homed architecture,

which is the research platform for the work presented in this thesis. We discuss

the traffic engineering opportunities associated with this architecture, and discuss

the traffic engineering schemes in detail. Also, we highlight the traffic engineering

research issues and challenges under this architecture.

In Chapter 4, we investigate the feasibility of using the packet-based traffic en-

gineering scheme in the mobile multi-homed architecture, by simulating the per-

formance of some well known packet-scheduling algorithms and their corresponding

flow-scheduling algorithms in a highly popular network simulator.

In Chapter 5, we formulate the flow-scheduling problem and propose several flow-

based traffic engineering algorithms that aim to maximize both the link utilization
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and the fairness of the system. We perform extensive simulations to compare the

performance of the proposed algorithms with previously proposed flow scheduling

algorithms.

In Chapter 6, we formulate the traffic engineering problem that aims to maximize

the profit of the mobile hotspot operator under a volume-based charging model, while

maintaining bandwidth guarantees for the on-board users. We propose two user-based

traffic engineering schemes and present extensive simulation results to highlight the

performance of the proposed algorithms.

In Chapter 7, we discuss the design of the mobile multi-homed downlink control

protocol (MH-DCP), which is a signaling protocol that allows the MR to exhibit

downlink data traffic control under the flow-based and user-based traffic engineer-

ing schemes. We will also present a thorough discussion on the various signaling

procedures that will arise in the operation of the protocol.

In Chapter 8, we conclude the thesis by summarizing the results of this thesis,

and outline a list of all potential future work.



Chapter 2

Background and literature review

In this chapter, we provide a detailed overview on the concept of multi-homing. We

discuss the various multi-homed models that have been proposed and the past related

work for each of these models.

2.1 Introduction

In the past, there had been considerable research on equipping users or networks with

multiple access links. Some of the reasons for equipping such systems with multiple

access links include: increasing the aggregate bandwidth, providing link resilience,

extending wireless access coverage, and reducing access costs etc.

In this chapter, the aim is to provide a detailed overview on the concept of multi-

homing. We discuss the various multi-homed models that have been proposed and the

past related work for each of these models. To do this, we first classify multi-homed

systems into three major categories, namely: the static multi-homed network model,

the mobile multi-homed user model, and the more recently proposed mobile multi-

homed network model. The classification is important since there are different issues

and challenges involved with each of the models. For example, in a multi-homed

11
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network model, fairness is an important issue for the system since there are multiple

users that are trying to send data over the multi-homed system, while the issue does

not apply to a multi-homed host model since there is only a single user entity in that

system.

The rest of this chapter is organized as follows. In Section 2.2, we provide a

detailed discussion on the static multi-homed network model. In Section 2.4, we

present the details of the mobile multi-homed host model. In Section 2.4, we discuss

the mobile multi-homed network model. In Section 2.5, we conclude this chapter with

a summary of its contributions.

2.2 Static multi-homed networks

We define static multi-homed networks as non-mobile fixed networks that connects

to the Internet via multiple access interfaces. Static multi-homed networks are also

commonly referred to as site multi-homing. Users in a static multi-homed system typ-

ically route their incoming and outgoing data traffic through a multi-homed gateway,

which is connected to the Internet via multiple network interfaces. The static multi-

homed networks are typically connected to the Internet via fixed wired links, and each

network interface may be connected to different access technologies and/or different

service providers. An illustration of the static multi-homed system architecture is

shown in Figure 2.1.

One of the popular uses of a static multi-homed system is to provide link resilience

for the network [11]. In this case, the multi-homed gateway only uses one of the links

for traffic routing, and in the case of a link outage the multi-homed gateway will switch

the data traffic over to another access link. To ensure that the downlink traffic are
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Figure 2.1: Static multi-homed network model

routed over the new access link, the router will advertise the Internet Protocol (IP)

address of the new access link using conventional routing protocols (e.g. Border

Gateway Protocol (BGP)). In this type of multi-homed system, the multi-homed

gateway can only select a single access link in which the aggregate data traffic will be

routed over to.

For multi-homed systems that aim to make use of the multiple access links simul-

taneously [11, 12], one of the tasks of the multi-homed gateway is to split the users’

traffic among the multiple network interfaces connected to the Internet. To do this,

the gateway needs to make a decision on which interface each data packet should be

routed through. In conventional IP routing, the gateway has a more straight-forward

task in exhibiting routing control over the uplink traffic (i.e. traffic going from users

to the Internet), than the downlink traffic (i.e. traffic going from the Internet to

the users). The gateway can control the routing of the uplink packets by forward-

ing the packets along any one of the available network interfaces, without requiring

any modifications or special techniques. The data packets will be forwarded to the

Corresponding Node (CN) by the intermediate routers using conventional routing



14

techniques. In contrast, it is not possible to schedule the users’ downlink traffic over

the multiple access links because in conventional routing, a network (or subnet) is

usually only associated with a single IP prefix. In order to make use of the multiple

access links for the downlink traffic, the multi-homed gateway can either participate

in BGP routing (which supports multi-homing) or make use of existing techniques

such as Domain Name Service (DNS) load-balancing which are highly popular for

balancing the web traffic among multiple web servers [13]. The main drawback with

these approaches is that the multi-homed gateway cannot exhibit control over which

access link each individual downlink packet or flow will be routed over from.

For systems based on Network Address Translation (NAT) [14]; a highly popu-

lar network configuration among small to medium size networks; the multi-homed

gateway can exhibit a finer level of downlink traffic engineering control. To allow

the internal users to use private IP addresses, the NAT gateway is responsible for

performing network address translation on all uplink packets. The packet address

translation involves replacing the IP header of the uplink packets with the gateway’s

external IP address and a random port number that is chosen to identify this flow. A

NAT table is responsible for storing all these flows-to-port mapping. For all incoming

packets destined to the gateway’s IP address, the gateway performs a lookup on the

NAT table using the destination port number and replaces the destination IP address

and port number with the user’s internal IP address and port number.

The multi-homed NAT gateway can control which interface each flow is routed

over back to the gateway by selectively performing network address translation over

each flow. This is done by encapsulating the uplink packets with any of the available

IP addresses mapped to each network interface, and hence the external CNs will
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see the source address of the packets as one of the external IP addresses selected

by the multi-homed gateway. Consequently, in conventional IP routing, all packets

for the flow will be forwarded and received over the same interface via the same

access network technology. The advantage with this approach is that the system can

utilize the multiple access links simultaneously. However, there are three limitations

with this approach. Firstly, the network access selection is restricted to only being

applied on a per-flow basis. This is because performing selective routing control

over each individual packet means packets of the same flow will have different source

address encapsulation, which breaks end-to-end flow semantics. Secondly, a flow

cannot be re-scheduled onto another link during its lifetime, since modifying the

table entry during the flow’s lifetime means changing the source address of the uplink

packets, which again breaks the end-to-end flow semantics. Finally, using the source

address to control downlink packets means that the system is restricted to routing

both the uplink and downlink traffic over the same network interface, which reduces

the system’s switching flexibility.

In [15], a new multi-path switching scheme based on flowlets was proposed. This

scheme aimed to combine the advantages of packet and flow switching; by offering a

reasonably fine switching granularity while ensuring out-of-order packet arrivals are

minimized. A flowlet is defined as a burst of packets in a TCP flow; where all the

packets in a flowlet have an inter-arrival time that is less than the flowlet threshold T .

To ensure packet re-ordering does not occur, the inter-arrival time threshold must be

at least equal to the latency between the diverging and converging point for the set

of parallel paths. The diverging router maintains a hash table containing the packet

time-stamps of each flow. For all packets arriving at the diverging router, the router
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computes a hash on the packet’s flow ID ; which is a combination of the packet’s

source and destination IP addresses and port numbers; to find the flow’s entry in

the hash table, and measures the inter-arrival time of the current packet and the

previous packet in this flow. If the inter-arrival time is less than the flowlet threshold

T , the packet must follow the path currently mapped to this flowlet. Otherwise,

the router classifies this as a new flowlet and can schedule this onto a different path

without the risk of packet re-ordering. The diverging router performs load balancing

with a simple flowlet scheduler that maps each new flowlet to the least utilized path,

which is defined as the link with the least amount of data transferred over it. The

main limitation with flowlet switching is its dependency on the latency between the

diverging and converging points. For fixed core multi-path networks, this value may

be stable and easily computed in advance. But for mobile multi-path networks which

depend on wireless access links from different service providers, the convergence point

of these parallel paths may be different for different locations of a trip and may not be

easily computed beforehand. Even if the convergence can be determined on-the-fly,

the latency may be highly fluctuating due to the wireless nature of the access links,

which increases the chance of packet re-ordering at the end hosts.

A new online distributed traffic engineering protocol was proposed in [16]. The

proposed protocol, named TeXCP, is designed to be used in Multi-Protocol Label

Switching (MPLS) type networks where there are multiple paths to deliver data

traffic from ingress to egress routers. The TeXCP protocol aims to minimize the

maximum load utilization of all the links in the network, by adaptively moving traffic

from over-utilized links to under-utilized links. To maintain load balance among

the paths, the egress routers need to actively probe the multiple paths linking each
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Ingress-Egress pair. This requires the TeXCP protocol to be supported by all the

intermediate routers. The traffic splitting in the network is performed on a per-flow

basis, and to prevent out-of-order packet arrivals the authors referred to a new flowlet

switching technique [15]. However, many important details such as whether existing

flows can be re-mapped to a new path, how the egress routers manages the flow

to path mappings, and the effects of re-mapping existing flows to new paths were

omitted. Extensive simulations were performed using real packet trace files and the

protocol showed that the use of the TeXCP protocol was able to achieve within a few

percent of the optimal load balance.

Rost et.al., proposed several hash-based algorithms which performed rate-aware

splitting of aggregate traffic over multiple paths [17]. The focus of this work was on

multi-path routing in wired core networks. The proposed solution computes a hash

based on flow identifiers, which is a unique combination of the source IP address,

destination IP address, source port number, and the destination port number. The

system splits the traffic over the multiple outgoing links according to the hash value

computed for each flow. The advantage of hash-based flow switching is that it provides

a more scalable version of flow-based switching, since the router does not need to

maintain any per-flow state information. This is particularly important for core

networks since there are potentially million of active flows going through a router at

any point of time. Also, the flow switching nature ensures the probability of out-of-

order packet arrivals is minimized. The disadvantage with this solution is like most

flow switching solutions; it does not offer the fine granularity as packet switching and

hence leads to a overall load in-balance among the paths. The proposed algorithms

aimed to minimize this imbalance by considering the rates of the flows (i.e. the
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throughput of each link) in its traffic splitting decisions. By continuously adjusting

the hash bucket sizes, it ensures that the traffic splitting vector is as close to the

optimum splitting vector as possible. Performance metrics for the algorithms includes:

measuring the load imbalance based on sample normalized correlation of the current

and optimum splitting vectors (i.e. using dot product), and measuring flow disruption

which is defined as the probability in which the traffic splitting node forwards packets

(from an active flow) from one link to another. The system aimed to minimize the

flow disruption metric since switching the data packets from one link to another

can potentially cause out-of-order packet arrivals, which (the authors claimed) will

degrade the TCP performance.

Yamai et.al., proposed a dynamic TCP flow scheduler for static multi-homed

networks [18]. The proposed flow scheduler utilizes the connection setup time of the

TCP flows to determine the best interface selection metric for each of these flows.

To do this, the multi-homed router detects the arrival of the TCP connection setup

packets (i.e. SYN packets) sent by the hosts inside the network, and forward duplicate

copies of these packets to all the available network interfaces. Upon receiving the first

response packet, the multi-homed router can determine which interface has the lowest

communication setup time for this particular flow. It will then forward all subsequent

packets from this TCP flow to the selected interface. Since the link selection is only

performed at the start of the flow, this technique only works well for static networks

with relatively stable link characteristics.

The issue of optimizing profit and performance for static multi-homed network

was thoroughly investigated in [19]. The work focused on designing offline and online

routing algorithms which distributes traffic in a way that maximizes the profit under
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the percentile-based charging scheme. Under this charging scheme, an Internet Service

Provider (ISP) records the traffic volume a user generates during every 5-minute

time interval. At the end of the complete charging cycle, the percentiles are sorted

in ascending order according to the volume transferred over each timeslot, and the

system needs to select the charging parameter q. The q value (between 1-99) is used

to determine the charging volume, where the q-th percentile of the sorted 5-minute

traffic volumes is selected as the charging volume x for the user. This charging scheme

is designed for core ISPs networks, which is the context of this research. An online

integral (heuristic) flow switching algorithm was proposed and it aimed to maximize

the profit of the system by making predictions on the future flow traffic patterns.

2.3 Mobile multi-homed hosts

In the mobile multi-homed host model, mobile users carry communication devices that

are equipped with multiple access network connections. Examples of these multi-

homed devices includes: mobile phones; PDA; and laptop computers. Figure 2.2

illustrates the mobile multi-homed host architecture.

The mobile multi-homed host model differs to other multi-homed models in many

ways. Firstly, the application context of the multi-homed host model is different

since there is only a single user in the system. Thus, issues such as maintaining a fair

bandwidth share between users and providing service differentiation between users

do not apply in the multi-homed host model. Secondly, the traffic demand on the

multi-homed host model is highly likely to be less than the multi-homed network

models, again due to the fact that there is only a single user in the system. Finally,

the mobile multi-homed host model assumes the users will utilize wireless access links
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Figure 2.2: Mobile multi-homed host model

for mobility support, which are different to the fixed-line links since they are relatively

more bandwidth-limited and have highly fluctuating link characteristics.

A new architecture idea for multi-homed hosts situated in physical proximity

to spontaneously share Wireless Wide Area Network (WWAN) bandwidth was pro-

posed in [20]. The proposed solution consists of a proxy-based inverse multiplexer

(PRISM), that aims to provide efficient bandwidth aggregation by masking out the

different Quality of Service (QoS) characteristics of WWAN links. The work is mainly

focused on how the proxy (located in the Internet) schedules the users traffic over

the multiple WWAN links. The proposed proxy solution performs packet stripping

across multiple WWAN channels. By intelligently controlling the delivery of the

TCP acknowledgement packets for the users, the proxy can minimize the probability

of packet re-ordering at the receiving hosts. Since packet scheduling over heteroge-

neous wireless links requires precise link state information; which is difficult to obtain
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due to wireless channel dynamics; a new packet scheduling algorithm called Adaptive

Scheduler (ADAS) is used to maximize bandwidth aggregation for the wireless links.

The packet scheduler requires probing into the different TCP packet types, in which

for all packet re-transmissions, the proxy forwards the packets over the link with

the minimum Round Trip Time (RTT). For all other packets, the proxy sends them

over the least utilized link, which is defined as the link with the minimum number

of packets in-flight. The main drawback with this approach is that the solution is

not transparent to the users, as the end hosts are all required to use a modified TCP

implementation called PRISM-TCP. A prototype was implemented and simulations

showed that the PRISM architecture was able to masks out the bandwidth; delay; and

loss rate disparities to achieve close to optimum bandwidth aggregation for the users.

Note that the experimental results only concentrated on the performance of schedul-

ing a single PRISM flow (over multiple wireless links), which does not highlight the

bandwidth competing nature of TCP.

Horde [21] is a new middle-ware that allows user applications to exhibit control

over network stripping ; which is defined as the construction of a high-bandwidth

virtual channel from a collection of low bandwidth network channels. The motivation

behind this work is driven by the need to provide QoS sensitive medical application

(streaming) from ambulance vehicles over existing WWANs. The middle-ware allows

applications to exhibit influence over the network stripping policy, and is specifically

targeted at wireless channels where the bandwidth and delay characteristics are highly

dynamic. The stripping mechanism aims to satisfy the QoS objectives as requested by

the application, by determining which ADU (application data unit) will be mapped

to each transmission slot (txSlot). Since the txSlots are highly dynamic in terms
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of QoS and charging rate, the mapping of the ADUs must be performed on-the-

fly. To further improve the performance of the applications, the scheduler performs

predictions on the channel characteristics. The major limitation with this approach

is that it requires applications to be re-written in order to support the interaction

between the application and the middle-ware.

A new network layer solution to perform flow splitting across multiple network

interfaces at the IP level was proposed in [22]. The solution is transparent to the

transport layer, as the IP packets are independently tunneled over to the receiver using

multiple wireless paths. Sender-side scheduling mechanisms were proposed to mask

the disparity among the multiple links (i.e. bandwidth, RTT) to avoid undesirable

behavior such as out-of-order packet arrival at the receiver.

A new transport layer protocol called Reception Control Protocol (RCP) was

proposed in [23]. The motivation behind this is that locating the intelligence of a

transport protocol at the mobile host that is adjacent to the wireless link(s) can

result in distinct performance advantages. A multi-homed extension was proposed,

where the protocol relies on a packet scheduler that reduces the probability of out-

of-order packet arrivals by continuously monitoring the RTT of the wireless links and

scheduling the packets delivery accordingly. The use of the real time RTT values

allow the scheduler to make predictions on the packet arrival times.

The recently announced IEEE 802.11 (WiFi) mobile phones [24] are one of the

first commercially available multi-homed devices aimed at mobile users. WiFi phones

allow users to connect their phone to both the cellular networks and WiFi networks.

The motivation behind this is that when a cellular user moves into the coverage of

a WiFi network, the phone can switch their connection from the cellular network to
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the WiFi network. Once a user moves out of the WiFi coverage, the WiFi phone will

then switch the connection back to the cellular network. This approach allows cellular

operators to extend their coverage using WiFi networks, which are relatively cheaper

to deploy than cellular networks. Also, the WiFi networks provide significantly higher

bandwidth than the cellular networks, which makes it attractive for data services. In

addition, there have been proposals to support vertical handoffs [25–27] in these

systems, which allows users to preserve existing data or voice sessions when their

WiFi phones switches from one network connection to another.

2.4 Mobile multi-homed networks

The mobile network model is a relatively new concept that was specifically designed to

equip vehicles with an on-board network, which provides Internet connectivity to the

on-board passengers. Due to the movement of the vehicle, the mobile networks must

reply on wireless access technologies for Internet connectivity. Consequently, since

the wireless access links are both bandwidth limited and have highly fluctuating link

characteristics, there have been proposals to connect these on-board networks to the

Internet via multiple access links [28, 29]. Equipping such systems with multiple

wireless access links allow the system to have a higher bandwidth and more stable

link to the Internet. Figure 2.3 illustrates the mobile multi-homed network model.

The mobile multi-homed network architecture differs from the other multi-homed

models, as the system needs to handle large amount of data traffic (from a group of

users) over several highly dynamic wireless access link. To make efficient use of the

multiple access links, the system needs to be able to distribute the users’ data traffic

over those links. Due to the relatively smaller size of such networks, the system is not
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expected to be able to participate in BGP routing; hence, this leaves the NAT based

solution as the more suitable existing multi-homed routing solution for the mobile

multi-homed network model.

As discussed in Section 2.2, the NAT-based multi-homed solution allows the sys-

tem to distribute the users’ data traffic on a per-flow basis. However, the draw-

back with this approach is that the system does not support changes in the IP ad-

dresses of each individual access links; which can occur if the wireless access network

changes the IP address of the connection; e.g. changing the Gateway GPRS Support

Node (GGSN) for users in a General Packet Radio Service (GPRS) network. In this

case, all existing sessions mapped to this network will be terminated since the change

of address will break the end-to-end connection semantics. The recently Internet En-

gineering Task Force (IETF) standardized NEMO protocol is an extension to mobile

IP that aims to provide transparent mobility support for users in mobile networks.

Multi-homed extensions based on the NEMO protocol have been proposed and this

will be thoroughly discussed in Chapter 3.



25

The Mobile Access Router (MAR), is a wireless multi-homed device that can be

placed in moving vehicles (e.g. car, bus, train) to enable high speed data access [28].

The MAR architecture is a NAT-based multi-homed solution where the MR controls

the traffic distribution over the multiple links by using different source-NAT addresses

for different flows. Flow splitting is not supported in the MAR architecture since it

will break the end-to-end connection semantics. The NAT-based solution also requires

that the uplink and downlink traffic of a flow must be routed over the same wireless

access link. The results presented in this work mainly focused on the comparison

of: technology; network; and channel diversity in existing overlapping wireless access

networks (GPRS and 802.11). In the presented MAR prototype, a simple round

robin TCP flow scheduler was used to achieve load balancing effects. The authors

acknowledged the load-balancing limitations of this scheduler, due to the fact that

each flow will have different start and finish times (i.e. different transfer sizes). Hence,

they made a call for further research in the design of suitable flow schedulers for mobile

multi-homed networks.

Chesterfield et.al., discussed how the diversity of cellular links can be exploited

to enhance multimedia streaming [30]. To highlight the diversity of WWANs, a

measurement test-bed that involves connecting a live GPRS network connected to

the Cambridge research lab was built. Also, a second Wireless Local Area Network

(WLAN) connection was used to see the effects of technology diversity. Extensive

measurements were performed and the following observations were found:

• When the GPRS reliability mode is enabled, there is a significant variation

in the propagation times across the link due to the Automatic Repeat Request

(ARQ) mechanism. The variation of the packet inter-arrival times is an order of
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magnitude larger (range between 70-610ms) than typically seen in wired links.

If ARQ is disabled, the variation of the inter-arrival times is much tighter (195

- 255 ms). The variance of the inter-arrival times is minimized at the expense

of higher packet loss (3.8%) and the loss seems to occur randomly.

• Errors occur in close proximity to each other. It was found that when a packet

error occurs, there is a high probability (90%) that the error affects more than

one packet. In all of the cases where there are multiple packet errors, the

distance between subsequent errors never exceeds three slots.

• Technology diversity provides the most uncorrelated behavior, since there can

be an order of magnitude difference in the network performance such as RTT.

The most uncorrelated behavior for similar technologies occur between separate

network providers operating in different frequency spectrums.

Based on the above observations, a new streaming tool which utilizes application

based error recovery was proposed. Techniques such as: stripping packets across mul-

tiple channels to distribute the effects of sustained loss over the network; designating

a single channel for parity packets; and a combination of distributing low bandwidth

protected data stream over reliable channels, and distributing high bandwidth un-

protected data over unreliable channels were studied. The conclusion drawn from the

results is that exploiting uncorrelated performance over separate channels provided

the highest performance improvement.

The issue of ingress filtering for multi-homed nodes that implement layer-3 mobil-

ity protocols such as Mobile IP and NEMO, was thoroughly addressed in [31]. Ingress

filtering is a layer-3 technique used to prevent IP address spoofing ; where users tries
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to send IP packets to other hosts using a fake source IP address. The ingress filtering

router can do this by checking the source address of all the packets that it needs to

forward against a list of valid subnet prefixes. The problem with using ingress fil-

tering in a multi-homed environment occurs when a multi-homed node is associated

with multiple Home Agent (HA)s. If the multi-homed node tries to send packets to

one of the HAs using the Care of Address (CoA) that belongs to another one of its

associated HAs; which may occur when one of the access links are inaccessible; the

HA that receives the packet may perform ingress filtering and reject that packet. To

address this issue, the authors proposed a new IP tunnel re-establishment technique

that allows these mobile multi-homed nodes; which includes individual mobile hosts

and mobile networks; to achieve ubiquitous connectivity to the Internet.

Paik et.al., outlined the benefits of equipping a mobile network with multiple

MRs in [29]. The authors extended the work by proposing a traffic sharing and

session preservation architecture in [32]. The proposed framework does not support

the simultaneous use of multiple MRs, and hence the aggregate data traffic cannot

be split among the multiple MRs. A location-based MR selection algorithm was

proposed, where the system selects the use of a MR according to the physical location

of the MR in the mobile network.

The concept of Multiple Mobile Routers Management (MMRM) was also discussed

in [33]. The proposed framework allows MMRM-enabled mobile users to access the

Internet via multiple MMRM-enabled MRs, which include the fixed MRs provided

by the mobile network, and the MRs provided by the mobile user themselves (i.e.

the Internet connections provided by the mobile users’ access network interfaces).

By distributing the users’ data traffic across multiple paths, the MMRM framework
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Figure 2.4: Classification of the various multi-homed systems

increases the redundancy and the bandwidth for the mobile users.

Suciu et.al., designed a new network interface selection framework for NEMO-

based multi-homed MRs in [34]. The proposed framework includes a profile manager

that specifies the performance characteristics and connection establishment instruc-

tions for each access link, and a selection decision module that makes decisions on

which access link should be used for data communication. The work does not discuss

in detail how the on-board system should deal with the network(s) selection problem

(i.e. traffic engineering).
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2.5 Summary

In this chapter, we provided a thorough background study on multi-homed systems,

and the past work which relates to the focus of this thesis. As we can see, there

has been research on a wide range of different issues and challenges associated with

multi-homed systems; including (and not limited to) layer-3 mobility support, hand-

off management, traffic engineering, middleware, network selection frameworks, and

new multi-homed architectures. Given the wide range of multi-homed contexts, we

classified multi-homed systems into three main types, namely: static multi-homed

networks; mobile multi-homed hosts; and mobile multi-homed networks and com-

pared the significant issues and differences between these multi-homed models. A

detailed classification on the various types of multi-homed systems presented in this

chapter is shown in Figure 2.4.

In the next chapter, we will discuss the more recently proposed NEMO multi-

homed architecture, which is the research platform for the work presented in this

thesis. We will highlight the advantages with such systems and compare the differ-

ences between our research model and the other multi-homed models discussed in

this chapter. We will also highlight the new traffic engineering opportunities, and the

research issues and challenges associated with the NEMO multi-homed architecture.



Chapter 3

NEMO multi-homed architecture

In this chapter, we provide a thorough discussion on the NEMO multi-homed archi-

tecture, which is the research platform for the traffic engineering solutions proposed

in this thesis. We highlight the traffic engineering opportunities, and discuss the

research issues and challenges under this architecture.

3.1 Introduction

The mobile network architecture is based on the IETF NEMO protocol [10,35], which

is currently the only standardized network mobility protocol designed for mobile

networks. It is important to base our research on a standardized protocol, so our

proposed solutions can be deployed in a wider range of multi-homed systems than

ones that utilizes proprietary technologies. The NEMO protocol provides transparent

network layer mobility support for the on-board passengers, which means the users’

transport layer sessions can be preserved whenever the mobile network changes the

CoA assigned to its access link. The change of CoA usually occurs when the system

is in transit; e.g. switching GGSNs in a GPRS network [36].

Recently, the newly established IETF MONAMI6 working group [37] is studying

30
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the issues and benefits of using multi-homing in the NEMO architecture. The aim is

to equip mobile networks with a multi-homed MR, in order to increase the aggregate

bandwidth of the system and provide resilience in the case of access link failures.

Since our research is based on this new mobile multi-homed network architecture,

the aim of this chapter is to provide an in-depth overview and discuss the traffic

engineering issues and challenges associated with the NEMO multi-homed model.

The rest of this chapter is organized as follows. In Section 3.2, we first provide an

architectural overview of the NEMO multi-homed system. In Section 3.3, we discuss

the traffic engineering opportunities that are inherited from the unique characteristics

of the NEMO multi-homed model. In Section 3.4, we highlight the research issues

and challenges in the NEMO multi-homed architecture. In Section 3.5, we conclude

this chapter with a summary of its contributions.

3.2 NEMO multi-homed architecture

The IETF standardized NEMO protocol [10] is designed to provide transparent mo-

bility to on-board users. In the standard NEMO model; where the mobile network
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is connected to the Internet via a single wireless interface; the MR is responsible for

transferring the users’ data traffic to and from a home agent that is located in the

Internet. The role of the home agent; which we name it as the Mobile Router’s Home

Agent (MRHA); is to act as the Internet gateway for all the data traffic to and from

the mobile network.

In the NEMO system, the on-board passengers are assigned an IP address that

belongs to a subnet, that is under the routing responsibility of the MRHA. For all

data packets destined to the on-board users, they are first routed to the MRHA. To

provide transparent mobility to the on-board users, the MRHA is responsible to keep

track of the MR’s current CoA while the mobile network is in transit and tunnels

the packets to the MR accordingly. Once the MR receives the tunneled packets, it

will decapsulate the packets and passed them to the destined on-board user. Since

the NEMO protocol is an extension to mobile Internet Protocol version 6 (IPv6);

where ingress and egress filtering are implemented in the IPv6 routers; the MR will

also need to tunnel all user uplink traffic that are destined to the Internet back to

the MRHA. The MRHA will decapsulate these packets and forwards them to the

appropriate CNs in the Internet. This process is known as bi-directional tunneling in

the NEMO research community.

The MONAMI6 IETF working group [37] is focused on extending the NEMO Ba-

sic Support Protocol with multi-home support. The group investigates the technical

issues and challenges for the NEMO multi-homed architecture. The research pre-

sented in this thesis compliments the research performed in the MONAMI6 working

group, as we are focused on designing traffic engineering algorithms that are suitable

for the NEMO multi-homed network architecture (i.e. controlling how to distribute
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the data traffic across the multiple access links). Our proposed traffic engineering so-

lutions cannot be realized without the appropriate underlying mechanisms to support

this architecture.

In the proposed NEMO multi-homed architecture; as shown in Figure 3.1; the

data traffic between the mobile network and the Internet are routed through the mul-

tiple bi-directional IP-to-IP tunnels established between the wireless network links

on the MR and the MRHA. For the uplink data traffic, the MR tunnels each packet

to the MRHA by encapsulating the packets with any one of the MR wireless access

networks current CoA as the source address, and the MRHA’s IP address as the desti-

nation address. The packet will be forwarded to the MRHA over the selected network

interface. When the MRHA receives the packet, it will decapsulate the packet and

forwards the packet to the destination specified in the original packet. For downlink

traffic, the packet will be first routed to the MRHA since MRHA is responsible for

handling the packets that are destined the subnet of the mobile network. The MRHA

encapsulates the packet using one of the MR’s CoAs as the destination address, and

the MRHA’s IP address as the source address of the packet. The packet will then be

routed to the MR via the wireless access network in the CoA is mapped to. Once the
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MR receives the packet, it decapsulates the packet and forwards it to the passenger

over the on-board LAN. An illustration of the bi-directional tunneling process in the

NEMO multi-homed system is shown in Figure 3.2.

3.3 Traffic engineering opportunities

The traffic engineering problem in the NEMO multi-homed architecture is focused

on controlling which wireless access links the users’ data packets will be forwarded

to. The control over this first or last hop wireless link, is crucial for the QoS in the

end-to-end path [38] since these wireless access links are bandwidth-limited and are

more error prone than the fixed wired communication links.

The NEMO multi-homed architecture provides a large degree of flexibility of traf-

fic engineering control since the passengers’ uplink and downlink data flows can be

dynamically routed through any one of the bi-directional tunnels, without affecting

the delivery of the packets to the end hosts. Consequently, the NEMO multi-homed

architecture presents the following traffic engineering opportunities:

• Traffic splitting - The bi-directional tunneling of the users’ data traffic allows

the multi-homed system to perform different types of traffic splitting; i.e. dis-

tributing the packets from a user or data flow among the different access links;

without breaking the users’ end-to-end flow semantics. This opens up the op-

portunity for the system to increase the overall link utilization by distributing

the data traffic among the wireless access links.

• Traffic re-scheduling - The bi-directional tunneling of the users data traffic also

opens up the opportunity for the system to dynamically re-schedule the data

traffic of a user or flow, from one access link to another without affecting the
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correct delivery of the data packets to the end users. This allows the system to

perform traffic engineering that adapts to the dynamic nature of the wireless

access links, by re-scheduling the data traffic among the different access links

to improve performance or for resilience purposes.

• Downlink traffic control - Since the MRHA is responsible for tunneling the users’

downlink data traffic to the MR, the NEMO multi-home architecture opens up

the opportunity for the MRHA to exhibit traffic engineering control over the

users’ downlink data traffic. As we will see in Chapter 7, a signaling protocol

between the MR and MRHA allows the MR to realize downlink traffic control.

This feature allows the system to perform independent uplink and downlink

traffic engineering control over the uses data traffic.

• Repetitive mobility patterns - In the case where the mobile network system is

deployed in PTVs; where the vehicles repetitively traverses fixed routes; the

mobility pattern of such system are more predictable than mobile users. Hence,

it is likely that the physical characteristics of the access links (i.e. signal quality,

interference) should exhibit some sort of correlation between each trip [39].

This opens up the opportunity for such systems to take advantage of this, by

utilizing historical data recorded in past trips to assist the system in making

predictions on link characteristics (i.e. the expected bandwidth in different

locations at different times of the day). The predictions allow the system to be

more proactive in its traffic engineering control.

The traffic engineering opportunities provides us with valuable guidance on the

design of traffic engineering solutions for the NEMO multi-homed model. As discussed



36

Flow 1

P_2

P_1

P_3 P_3

P_1

Host 1

P_2
Flow 2

P_4

Flow 1

Host 2

Flow 2
P_4

Satellite

GPRS

UM TS
P_2

P_3P_3

P_1M obile Router

P_4P_1P_2

P_1

P_3

P_3P_2

P_1

P_3P_3

Figure 3.3: Packet-based traffic engineering scheme

above, one of the traffic engineering opportunities is the ability to perform different

types of traffic splitting among the wireless access links which are connected to the

MR. This is an important traffic engineering design issue for the NEMO multi-homed

model; since, as we will discover in this thesis, selecting an unsuitable traffic splitting

will severely degrade the throughput performance of the users data flows. Therefore,

we have identified three types of traffic engineering schemes that can be used in the

NEMO multi-homing architecture, and structured our research accordingly. These

are namely: the user-based ; flow-based ; and packet-based traffic engineering schemes,

which are similar to the traffic splitting schemes as discussed in [40]. The traffic

engineering schemes basically represents the level in which the users data traffic can

be split among the multiple network interfaces. The difference between these schemes

lies in the granularity of the traffic engineering control that can be exhibited by the

MR and MRHA. We will now discuss each of these schemes in detail.

3.3.1 Packet-based traffic engineering scheme

The packet-based traffic engineering scheme; as illustrated in Figure 3.3; represents

the finest level of data switching control for the NEMO multi-homed architecture.
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This is a flow-splitting scheme, since each packet are routed independently and there-

fore packets from the same data flow can be distributed over multiple access networks.

The packet-based traffic engineering scheme will not affect the end-to-end flow seman-

tics, since the bi-directional tunneling of the data packets will not change the source

or destination IP address of the data packets.

The main advantage of the packet-based scheme is that it offers the finest level

of traffic engineering control for the routers. This allows the MR or MRHA to make

more efficient use of the multiple access links by treating the user data traffic as a

single packet stream and evenly distributing these packets among the access links.

However, there are several limitations with this approach. Firstly, switching a users’

traffic on a per-packet basis significantly increases the risk of out-of-order packet ar-

rival at the end users, which occur when there are performance disparity among the

access links. The out-of-order packet arrivals are undesirable since it degrades the

throughput performance of TCP flows and affects the quality of real time applica-

tions. Secondly, if the system tries to minimize the out-of-order packet arrivals using

techniques such as those discussed in [22, 23, 30], the router may need to maintain

precise state information of each access network, which may not be easily accessible

in the mobile network due its constant movement while in transit.

Unlike the user-based and flow-based traffic engineering schemes, the packet-based

traffic engineering scheme is only suitable for controlling the users’ uplink data traffic.

This is due to the fact that the MR is directly linked to the wireless access networks,

which makes it easier to schedule the users’ uplink packets across these links. As

most packet-based algorithms depends heavily on precise timing to mask out the

effects of out-of-order packet arrivals at the end hosts, the MRHA may not be able to
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Figure 3.4: Flow-based traffic engineering scheme

exhibit precise scheduling control on users’ downlink data traffic since the packets can

potentially traverse vastly different paths before being scheduled onto the different

wireless access networks. As a result, the downlink packets may not be scheduled

over the wireless access links as intended by the MRHA.

In the packet-based traffic engineering scheme, the MR performs traffic engineer-

ing control on a per-packet basis. Therefore, the multi-homed MR needs to make

instantaneous packet switching decisions. Depending on the different packet schedul-

ing algorithms, the MR or MRHA may need to maintain various types of packet

distribution tables.

3.3.2 Flow-based traffic engineering scheme

In the flow-based traffic engineering scheme, the users’ data traffic is scheduled over

the wireless access links on a per-flow basis. A flow is identified by a combination of the

source IP address, destination IP address, source port number, and the destination

port number. Therefore, the flow-based switching scheme involves mapping these

unique flowIDs to either one of the wireless access networks. Under this scheme,

each data flow can be independently routed over different interfaces, i.e. a single user
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Source IP Source port Destination IP Destination port Access link
x.x.x.x 3456 a.a.a.a 10000 Vodafone UMTS
x.x.x.y 7006 b.b.b.b 12000 Satellite
x.x.x.z 10000 c.c.c.c 13000 Vodafone GPRS

Table 3.1: Sample flow switching table

can have multiple concurrent active flows sent over different interfaces. Figure 3.4

illustrates the flow-based traffic engineering scheme.

The advantage with the flow-based traffic engineering scheme is that it offers

a medium level of switching control that lies between the packet-based and user-

based traffic engineering scheme. This allows the router to have greater flexibility

in controlling how the data traffic is distributed over the multiple wireless access

networks. It is also relatively simple to implement, as the switching only requires the

additional lookup of the packets’ IP addresses and port numbers to identify the flow.

Similar to the user-based traffic engineering scheme, there is a minimal probability

that packets from the same flow will arrive out-of-order since the packets from the

same flow are always mapped to a single link. The main disadvantage with the flow-

base scheme is that it does not represent the finest level of control, which may result

in sub-optimal switching performance. For example, if there is only a single flow in a

multi-homed system with 3 access links, a flow-based traffic engineering scheme will

under-utilized the system aggregate bandwidth since the scheme will only map the

flow to either one of the links in the system.

Similar to the user-based scheme, the flow-based scheme can be used to control

both the uplink and downlink traffic, by implementing a flow switching table similar

to the one shown in Table.3.1 in the MR and MRHA respectively. For all uplink
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packets, the MR will need to lookup the flowID in the flow switching table to

determine which access network to tunnel that packet over. Similarly, the MRHA

will need to perform a lookup on its own flow switching table before tunneling the

downlink packets to the on-board passengers.

In the flow-based scheme, the traffic engineering problem is basically to determine

which flow will be mapped to which network. The MR and MRHA needs to be able

to detect the arrival of new flows, and determine which access link the flow traffic

should be mapped to.

3.3.3 User-based traffic engineering scheme

The user-based scheme represents the simplest traffic engineering scheme of all. It is

a coarse-grain approach, where traffic engineering is performed on a per-user basis. A

user is identified by their on-board IP address and therefore the user-based switching

scheme only requires mapping the user IP to one of the wireless access networks.

This basically means that all flows that belong to a single user will be routed over the

same wireless access network, and any change in the traffic engineering will result in

transferring all flows belonging to the user from the original network over to the new

network. Figure 3.5 illustrates the user-based traffic engineering scheme.

The main benefit of using the user-based traffic engineering scheme is that it is

relatively simple to implement. The traffic engineering control is performed on the

aggregated requirements of each user. The MR does not need to maintain any per-

flow or per-link states, and the switching only requires the router to lookup the user

IP address of each packet. Also, as the packets from the same users are mapped to

the same link, the packets in each data flow of the users will consequently traverse

the same link which reduces the out-of-order packet arrivals at the end hosts. The
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Figure 3.5: User-based traffic engineering scheme

On-board host IP Access link
x.x.x.x Vodafone UMTS
x.x.x.y Satellite
x.x.x.z Vodafone GPRS

Table 3.2: Sample user switching table

disadvantage with the user-based scheme is that the switching performance may be

sub-optimal, due to its coarse grain switching nature.

The user-based traffic engineering scheme may be used to control the data traffic

in both the uplink and downlink direction. To implement the user-based traffic en-

gineering scheme in both the uplink and downlink direction, a sample user switching

table shown in Table.3.2 will need to be implemented in the MR and MRHA respec-

tively. For all incoming uplink packets, the MR will look at the source IP address of

the packet and tunnel the packet over the corresponding wireless access network as

indicated in the table. In contrast, the MRHA will make a lookup on the destina-

tion IP address for all incoming downlink packets, and tunnel the packets to the MR

accordingly.
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3.4 Issues and challenges

In Chapter 2, we classified the research on multi-homing into three main areas: static

multi-homed networks; mobile multi-homed hosts; and mobile multi-homed networks.

To highlight the novelty of our research model, the NEMO multi-homing architecture

has the following characteristics:

• Dynamic link characteristics - The wireless nature of the access links, and the

fact that the entire system is on the move means that the link characteristics (i.e.

bandwidth and delay) are more dynamic than the static multi-homed networks.

It is therefore a challenge for the mobile multi-homed network to mask out these

variations in order to provide a more stable and higher bandwidth link to the

on-board users.

• Large data traffic - The amount of data traffic transferred over the mobile multi-

homed network are likely to be significantly more than a single mobile multi-

homed user. Therefore, efficient traffic engineering over these dynamic and

bandwidth-limited wireless links is a crucial design goal for the MR. With a

multi-user system, the traffic engineering design may also need to be aware of

additional switching criteria such as providing a fair bandwidth allocation to

the on-board users, and performing user admission control to limit the number

of users in the system.

A detailed classification on the various types of multi-homed systems is shown

in Table.3.3. The challenge with traffic engineering is to maximize the performance

metrics for both the mobile network operator and the on-board passengers. For

example, the operator may want to maximize the system link utilization or its profit
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Multi-homed type User traffic Access links Mobility
static networks high - multiple users wired static links no mobility
mobile hosts low - single user wireless dynamic links random
mobile networks high - multiple users wireless dynamic links repetitive

Table 3.3: Characteristics of different multi-homed models

under a common charging model, while the users may want high per-flow fairness or

bandwidth guarantee. This is a highly challenging problem since there are potential

trade-offs between the operator and user objectives. In this thesis, we will investigate

design traffic engineering solutions that aim to maximize these operator and user

objectives for the NEMO multi-homed architecture.

3.5 Summary

In this chapter, we provided an in-depth overview on the NEMO multi-homed archi-

tecture; where we focused our discussion on the bi-directional tunneling of the data

traffic between the on-board users and their corresponding nodes in the Internet.

We have identified that the ability to perform traffic splitting, traffic re-scheduling

and downlink traffic control are the new traffic engineering opportunities for the

NEMO multi-homed architecture. Also, we have identified the three traffic engineer-

ing schemes that can be used in the NEMO multi-homed architecture; namely the

packet-based, flow-based and user-based traffic engineering schemes; and provided a

thorough comparison on the performance and implementation issues associated with

each of these schems.

To motivate our research, we highlighted the new traffic engineering issues and
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challenges that are associated with the NEMO multi-homed architecture, and com-

pare the differences between the NEMO multi-homed network model with the other

previously proposed multi-homed models that were discussed in Chapter 2. Our in-

depth comparison shows that the NEMO multi-homed system faces the challenge of

switching large amount of on-board users’ data traffic over a set of highly dynamic

wireless access links.



Chapter 4

Packet-based traffic engineering

In this chapter, we investigate the feasibility of implementing packet-based traffic

engineering solutions in the mobile multi-homed network architecture. Our results

show that the flow-splitting nature of the packet-based traffic engineering significantly

degrades the throughput performance of users’ TCP data flows, hence making it

unsuitable for the mobile network architecture.

4.1 Introduction

The packet-based traffic engineering scheme offers the finest switching granularity

among the various traffic engineering schemes that can be implemented in the NEMO

multi-homed architecture. However, as discussed in Section 3.3, the packet-based traf-

fic engineering scheme may introduce the packet re-ordering problem, which affects

the performance of the data flows. In this chapter, the aim is to investigate the perfor-

mance of packet-based traffic engineering in the mobile multi-homed network model.

In particular, we discuss some popular packet scheduling algorithms, and examine

whether these algorithms are suitable for the mobile multi-homed network model.

Furthermore, as the packet scheduling algorithms are flow-splitting approaches, we

45
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compare the performance of packet scheduling algorithms against some relevant flow

scheduling algorithms to examine the effects of flow-splitting in a simulated mobile

multi-homed network model.

The rest of this chapter is organized as follows. In Section 4.2, we look at the

design of some popular packet scheduling algorithms that were proposed in the past.

In Section 4.3, we discuss the details of the simulation model and the experiment

scenarios will be used to model the dynamic behavior of the wireless access links.

In Section 4.4, we present a thorough simulation analysis on the performance of

the various packet and flow schedulers discussed, to investigate the effects of packets

switching in the context of mobile multi-homed networks. In Section 4.5, we conclude

this chapter with a summary of its contributions.

4.2 Packet scheduling algorithms

In this section, we present the design of two popular packet scheduling algorithms;

namely the Round Robin (RR) and Weighted Round Robin (WRR) packet scheduling

algorithms. These algorithms were selected for our simulation analysis since they

have been heavily studied in the context of packet queuing and packet scheduling

[41–44]. The aim of these packet scheduling algorithms is to balance the traffic load

among the multiple access links. We did not consider other more advanced packet

scheduling algorithms; for example the weighted fair queuing, deficit round robin,

and their many other variants; since the aim of this analysis is to investigate the

effects of flow-splitting in the context of mobile multi-homed networks. Therefore, we

instead implemented the corresponding RR and WRR flow scheduling algorithms in

our simulation study.
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4.2.1 Round Robin

The RR packet and flow scheduler schedules every new incoming packet and flow

to each link in a round robin fashion. The aim of these scheduling algorithms is to

evenly distribute the user traffic among the multiple access links, and to ensure that

all the access links are utilized by the multi-homed system.

For the RR packet scheduler implementation, the MR will first be given a list of

all the access links in the multi-homed system. For each incoming packet, the MR

will schedule the packet to the first link in the list. The MR will then rotate the list

of access links to ensure that packets are scheduled to the other links before they are

scheduled to the same link again.

In the RR flow scheduler implementation, the MR will again be given a list of all

the access links in the multi-homed system. For each incoming packet, it first needs

to detect whether the packet belongs to a new or existing flow. If the packet belongs

to a new flow, the MR will select the first link in the list, and create a new entry in

the flow switching table. All subsequent packets from this flow will then be scheduled

according to the link mapped to this flow. For every new flow, the MR will rotate

the list of access links in a round-robin manner to ensure that flows are scheduled to

the other access links before they are scheduled to the same link again.

4.2.2 Weighted Round Robin

The main limitation with RR scheduling is that it does not consider the link band-

width disparity in its scheduling decision. This may result in both the under-utilization

and over-utilization of the different access links in the system. To deal with this is-

sue, we include the more advanced WRR flow and packet scheduler in our study. The
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WRR scheduler is an extension to the RR scheduler, where it utilizes the links’ band-

width information in its scheduling decision. Therefore, instead of blindly scheduling

every new packet or flow to each access link in a round robin manner, the WRR

scheduler assigns weights to each link and forwards the data onto each link in pro-

portion to the weights assigned. For example; if we have a multi-homed system with

3 links (10Mb/s, 5Mb/s, 1Mb/s); the WRR scheduler will assign the first 10 pack-

ets/flows to the first link, the next 5 packets/flows to the second link, and the next

packet/flow to the third link. The scheduling of subsequent packets or flows will

repeat this distribution pattern.

The implementation of the WRR packet and flow schedulers are similar to the

corresponding RR packet and flow schedulers. In the WRR packet and flow sched-

ulers, the MR needs to maintain a count on the number of packets/ flows that have

been sent on the current link (in a list of access links). The MR will only move on to

the next access link when it has sent the required number of packets or flows to the

current link. The required number of packets or flows scheduled to an access link is

determined by the weights assigned to each link.

4.3 Simulation model

4.3.1 Simulation architecture

To examine the performance of the packet and flow schedulers that were discussed

in the previous section, we performed a set of simulations under a modified version

of Network Simulator Version 2 (NS2). NS2 is a discrete event simulator which

is widely used by the research community to evaluate network performance. We

selected NS2 as our simulation platform because it is an open-sourced simulator,
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Figure 4.1: NS2 simulation architecture for the NEMO multi-homed model

which allows us to modify the simulator according to our needs. Also, the simulator

contains an accurate implementation of TCP, and built-in support for tracing various

important performance metrics such as the TCP sender congestion window size, TCP

throughput, TCP re-transmissions etc. This allow us to measure the TCP throughput

performance of the MR and the end-to-end users in our simulations.

The simulation architecture used in this simulation analysis is shown in Figure

4.1. In this simulation architecture, the on-board users and the MR represents the

mobile multi-homed network. The MR is connected to the Internet via the multiple

wireless access links, which are represented by the dotted lines between the MR and

the various Base Station (BS)s. As we are only concerned with varying the link

bandwidth and propagation delays to simulate the dynamic link characteristics, we

did not implement any wireless link or physical layer models in the access links. The

link dynamics are simulated by varying the link bandwidths and propagation delays

during the simulation. The base-stations, MRHA, and the corresponding nodes are

all assumed to be located in the Internet and hence they are all connected via links
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Parameter Value
TCP Sender TCP Newreno
TCP Segment Size 1000 bytes
Maximum TCP Window Size 1000 segments
TCP Receiver TCPSink
Application layer protocol FTP
File size 50Mb

Table 4.1: Static NS2 simulation parameters.

with high bandwidth and low delay settings. For simplicity, we did not introduce any

other external data traffic in the simulation model. The static simulation parameters

used in the NS2 simulations are listed in Table 4.1. Note that the maximum TCP

window size value has been set to a relatively high value (of 1000 segments), so that

it is bounded by the end-to-end bandwidth delay product rather than the default

value (of 20 segments) in the standard NS2 implementation. For the implementation

details of our NS2 simulation model, please refer to Appendix A.

4.3.2 Experimental scenarios

Identical links case

We start off our simulation study by looking at the identical links case where there

are no link disparities in the system; i.e., all the links have identical bandwidths and

propagation delays. The access link parameters used in this simulation scenario are

shown in Table 4.2.

The identical links case allows us to measure the performance of the packet and

flow schedulers under the absence of link disparity and bandwidth variations. The

absence of link disparity means that we expect the packets to arrive in-order at the

end hosts, even if the packets are scheduled onto different access links.
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Base-station Bandwidth Propagation delay
BS1 5Mb/s 20ms
BS2 5Mb/s 20ms
BS3 5Mb/s 20ms
BS4 5Mb/s 20ms
BS5 5Mb/s 20ms

Table 4.2: Link parameters for simulation with identical access links.

To see whether the presence of multiple flows affects the system and flow per-

formance of the schedulers, we performed two sets of experiments under this case.

Firstly, we look at the performance of a single flow scenario, where we initiated a

50Mb file transfer over the system between the on-board user and the corresponding

node. Secondly, we repeated the first set of simulations with the exception that there

are 10 file transfers instead of one.

In the identical links case simulations, we only simulate the performance of the

RR packet and flow scheduling algorithms since there are no bandwidth disparity

to differentiate the link weights for the WRR packet and flow schedulers. Since the

bandwidth values are all identical (i.e. all the link weights are equal to 1), the WRR

packet and flow schedulers will therefore schedule all the packets/flows in the exact

same way as their corresponding RR schedulers.

Delay disparity case

In the delay disparity case, we introduce propagation delay disparity among the access

links. The access link parameters used in this scenario are shown in Table 4.3.

For the packet schedulers, we expect that there may be out-of-order packet arrivals

in the delay disparity case since the time it takes for the packets to reach the end
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Base-station Bandwidth Propagation delay
BS1 5Mb/s 20ms
BS2 5Mb/s 30ms
BS3 5Mb/s 40ms
BS4 5Mb/s 50ms
BS5 5Mb/s 60ms

Table 4.3: Link parameters for simulation with link propagation delay disparity.

hosts will be different for each link. This is because the packet scheduling algorithms

performs flow-splitting, where packets from the same flow are scheduled over different

wireless access links. In contrast, we predict that the packet re-ordering problem will

not occur in the flow schedulers, since packets in the same flow will follow the same

end-to-end path. The only effect we may see on the flow schedulers is that some

flows may suffer degraded throughput performance when mapped to a higher delay

link, since the TCP throughput performance is determined by the product of the

bandwidth and delay values of the access link.

In the simulation of the delay disparity case, we will only simulate the single

and multiple flows scenarios for the RR packet and flow scheduling algorithms. We

expect that the flow transfer time of the RR flow scheduler will be the same as

the corresponding simulation scenario of the RR flow scheduler in the identical link

case, since the data flow is mapped to the same link parameters in both simulations.

Again, we will not simulate the performance of the WRR packet and flow scheduling

algorithms since the weights will be the identical in the access links.
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Base-station Bandwidth Propagation delay
BS1 1Mb/s 20ms
BS2 2Mb/s 20ms
BS3 3Mb/s 20ms
BS4 4Mb/s 20ms
BS5 5Mb/s 20ms

Table 4.4: Link parameters for simulation with link bandwidth disparity.

Bandwidth disparity case

In the bandwidth disparity case, we investigate the effects of bandwidth disparity

among the access links. The access link parameters used in this scenario are shown

in Table 4.4.

Similar to the delay disparity case, we expect that the packets scheduled by the

packet scheduling algorithms in the bandwidth disparity case may experience packet

re-ordering problems at the end hosts. This is because the bandwidth difference

between the access links means packets scheduled on these links will have different

transmission rates. For the flow schedulers, we expect that the flow transfer times will

be different for flows mapped to the different links, due to the bandwidth disparity

among the access links.

In the single flow scenario, we will only simulate the performance of the RR packet-

scheduler, RR flow scheduler, and the WRR packet scheduling algorithms. The WRR

flow scheduler will not be included in the single flow scenario since its flow assignment

will be identical to the RR flow scheduler. For the multiple flows scenario, we will

simulate the performance of the RR and WRR packet and flow schedulers since the

bandwidth disparity among the links allows us to assign different link weights to

the access links; hence, the RR and WRR flow schedulers will make different flow
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scheduling decisions.

Bandwidth variations case

In the previous sets of simulations, we looked at the ideal case where the links did not

exhibit any bandwidth variations. This is not an accurate representation of the mobile

network model since the access links will exhibit bandwidth variations when the

system is in transit. Hence, we introduced bandwidth variations among the links to

see how both schedulers will perform under these variations. To simulate bandwidth

variations, we varied the bandwidth of the links at fixed time intervals, where the size

of the interval depends on the number of variations per 1000 simulation seconds (s).

For example, if there are 100 bandwidth variations per 1000s in a particular simulation

scenario, it means that there is a bandwidth variation in every 10s (from the start of

the simulation). At the bandwidth variation times, the bandwidths variations among

the links followed a uniform random distribution, where the values take on some

fixed-size multiples (i.e. 0.5Mb/s) between zero and the maximum bandwidth of the

links.

4.4 Simulation results and analysis

Identical links case

In the single flow case for the identical links scenario, the recorded file transfer time

for the RR packet scheduler and the RR flow scheduler were 49.455s and 89.537s

respectively. The significant difference between the transfer times shows that the RR

packet scheduler is able to make efficient use of the multiple link bandwidths, since

the packet scheduler was able to evenly distribute the packets among the access links

without experiencing packet re-ordering problems. In contrast, the flow scheduler
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experienced a much higher transfer time since it was only able to utilize a single link

in the system.

To gain a deeper understanding on the behavior of the TCP flows, we plotted the

Sender Congestion Window (CWD) trace for the RR packet-scheduler and RR flow-

scheduler in Figure 4.2 and Figure 4.3 respectively. Since there were no bandwidth

variations introduced in these simulations, the CWD converged to a stable state in

both cases. As the RR packet scheduler was able to utilize the bandwidth of the other

links, it was able to converge to a higher CWD than the RR flow scheduler.

Next, we examined the effects of transferring multiple flows over both schedulers.

We repeated the same simulations as previously; but with 10 FTP flows instead of 1.

In this scenario, the RR flow-based scheduler was able to schedule the 10 flows evenly

among the links. Hence, similar to the RR packet scheduler, the RR flow scheduler

was able to make use of the aggregate bandwidth of the links.

We measured the mean flow duration for the schedulers, and the values were

164.178s and 168.059s for the RR packet scheduler and the RR flow scheduler respec-

tively. It was evident that the performance difference between the two RR scheduling

scheme was significantly reduced, due to the fact that the RR flow scheduler was

able to make use of the aggregate bandwidth of the links. We also plotted the CWD

trace for one of the flows in the RR packet scheduler and the RR flow scheduler in

Figure 4.4 and Figure 4.5 respectively. Looking at Figure 4.4, we can see that the

introduction of other flows in the system has caused a certain degree of instability

in the CWD trace for the TCP flow in the RR packet scheduler. This instability is

caused by the minor scheduling time variations of the packets, due to the presence of

other competing flows in the system. In contrast, the same reference flow in the RR
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Figure 4.2: The sender congestion window trace for the RR packet scheduler in the
identical link case with single flow.
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Figure 4.3: The sender congestion window trace for the RR flow scheduler in the
identical link case with single flow.
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flow scheduler did not exhibit this instability. This illustrates that the performance

of the RR packet scheduler is sensitive to the presence of multiple flows.

Delay disparity case

In the single flow case for the link delay disparity scenario, the recorded file transfer

times for the RR packet scheduler and the RR flow scheduler are 1668.640s and

89.537s respectively. This is in strong contrast to the identical links case, as the

performance of the RR packet scheduler has been significantly degraded as a result

of the delay disparities among the access links. Looking at the CWD trace for the

RR packet scheduler, as shown in Figure 4.6, we can see that the TCP flow was not

able to increase its CWD window to the levels reached by the corresponding flow

in the identical links case (Figure 4.2). The reason why the CWD was capped at

such a low range is because of the large number of packet re-transmissions in the

RR packet scheduler, which recorded 6124 packet re-transmissions compared to the

271 packet re-transmissions recorded for the RR flow scheduler. As each packet are

traversing paths with different delay characteristics, the significant number of packet

re-transmissions is likely to be caused by the out-of-order packet arrivals at the end

hosts. The effect of this is that it severely limited the throughput performance of the

TCP flow.

In the multiple flows scenario, the mean file transfer times recorded for the RR

packet scheduler and the RR flow scheduler are 905.596s and 169.044s respectively.

Interestingly, the performance of the RR packet scheduler improved over the single

flow case. The CWD trace show in Figure 4.7 illustrates that the TCP flow in the

RR packet scheduler was able to converge to a higher CWD range than the single

flow scenario. Again, the total number of re-transmissions had a direct influence on



58

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140  160  180

S
en

de
r 

C
W

D
 s

iz
e 

(p
ac

ke
ts

)

Time (s)

Figure 4.4: The sender congestion window trace for the RR packet scheduler in the
identical link case with multiple flows.
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Figure 4.5: The sender congestion window trace for the RR flow scheduler in the
identical link case with multiple flows.
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Figure 4.6: The sender congestion window trace for the RR packet scheduler in the
link delay disparity case with single flow.
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Figure 4.7: The sender congestion window trace for the RR packet scheduler in the
link delay disparity case with multiple flows.
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Scheduler RR Packet WRR Packet RR Flow WRR Flow
Mean flow duration 1403.799s 452.982s 569.428s 414.361s

Mean packet re-transmissions 6345.8 4154.73 226.3 212.8

Table 4.5: Mean flow duration and packet re-transmisions for simulation with link
bandwidth disparity - multiple flows case.

the throughput performance of the flows, since each flow in the RR packet scheduler

had an average of 5191.4 packet re-transmissions (compared to 6124 in the single flow

case). The decrease in the number of packet re-transmissions is likely to be caused by

the decrease in the number of out-of-order packet arrival at the end hosts, since the

presence of multiple flows has increased the inter-packet scheduling time of packets

belonging to the same flow.

Bandwidth disparity case

In the bandwidth disparity scenario, we added the WRR packet and flow schedulers

to our simulation analysis. For the single flow case, the file transfer times for the

RR packet scheduler, the WRR packet scheduler, and the RR flow scheduler were

1348.393s, 568.441s, and 85.259s respectively. By assigning the number of packets

according to the link weights, the WRR packet scheduler was able to improve the

throughput performance of the RR packet scheduler by more than 50%. In addition,

even if the RR flow scheduler only utilized one access link, it was able to transfer the

flow by over 6 times quicker than the WRR packet scheduler.

In the multiple flows case, we include the WRR flow scheduler in the simulation

and the mean flow transfer times and the mean packet re-transmissions (per-flow) for

the packet and flow schedulers are shown in Table 4.5.
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Figure 4.8: The sender congestion window trace for the WRR packet scheduler in the
link bandwidth disparity case with multiple flows.
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Figure 4.9: The sender congestion window trace for the WRR flow scheduler in the
link bandwidth disparity case with multiple flows.
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It is evident that the WRR packet and flow schedulers were able to achieve a

higher throughput than their corresponding RR schedulers. Hence, we limit our

discussion to the WRR schedulers as the characteristics of the RR schedulers were

heavily discussed in the previous simulation scenarios.

The WRR flow scheduler was able to offer a lower mean flow duration than the

WRR packet scheduler, since the WRR had more than an order of magnitude lower

mean packet re-transmissions than the WRR packet scheduler. The CWD traces for

one of the TCP flows in the WRR packet and flow scheduler are plotted in Figure

4.8 and Figure 4.9 respectively. Like other flow schedulers, the CWD in the WRR

flow scheduler converged to a much steadier state than the WRR packet scheduler.

As a result, the flow scheduler was able to achieve significantly lower packet re-

transmissions and hence lower file transfer time than the packet scheduler. This

illustrates the negative effects of flow-splitting in a multi-homed system with different

bandwidth access links.

Bandwidth variations case

In this set of simulations, we introduced bandwidth variations among the access

links. In the identical links case, we plotted the relationship of increasing the number

of bandwidth variations and the mean flow duration in Figure 4.10 and Figure 4.11;

which represented the single flow and 10 flows case respectively. In the single flow case,

we can see that the RR packet scheduler was able to offer a lower flow transfer time

in the absence of bandwidth variations. But as the number of bandwidth variations

increases, the throughput performance of the RR packet scheduler deteriorated quite

quickly. Once the number of bandwidth variations went beyond 20 variations per

1000s (i.e. a bandwidth variation scheduled every 50s), the RR flow scheduler was
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able to outperform the RR packet scheduler in the throughput performance by almost

50%. The throughput performance difference between the two scheduler increased as

the number of bandwidth variations was increased.

For the multiple flows case, it is also evident that the RR flow scheduler was able

to significantly outperform the RR packet scheduler in throughput performance as

the number of bandwidth variations in the system was increased. Apart from the per-

formance difference between the two schedulers, another interesting behavior is that

the RR flow scheduler was able to offer a relatively stable throughput performance

once the number of bandwidth variations was higher than a certain point (i.e. 30

variations per 1000s). This shows that the RR flow scheduler is much less sensitive

to the number of bandwidth variations in the system than the packet schedulers.

We plotted the CWD trace of the RR packet and RR flow schedulers in the multi-

ple flows scenario with maximum bandwidth variations (i.e. 100 variations per 1000s),

in Figure 4.12 and Figure 4.13 respectively. The traces show how the throughput per-

formance of the RR packet scheduler was significantly degraded in this simulation run.

The bandwidth variations caused significant packet re-transmissions at the end-hosts,

which limited the growth of the CWD in the TCP flows.

For the delay disparity case, we plot the number of bandwidth variations versus the

mean flow duration time for the RR packet and flow schedulers in Figure 4.14. Similar

to the results shown earlier, the RR packet scheduler offered inferior throughput

performance even in the absence of link bandwidth variations. As we increased the

number of bandwidth variations, the RR packet scheduler offered almost 8 times the

file transfer times over the RR flow scheduler.

Finally, we plot the number of bandwidth variations versus the mean flow transfer
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Figure 4.10: The number of bandwidth variations versus flow transmission time, in
the identical link case with single flow.
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Figure 4.11: The number of bandwidth variations versus flow transmission time, in
the identical link case with multiple flows.
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Figure 4.12: The sender congestion window trace for the RR packet scheduler, in the
identical link case with multiple flows and 100 bandwidth variations per 1000s.
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Figure 4.13: The sender congestion window trace for the RR flow scheduler, in the
identical links case with multiple flows and 100 bandwidth variations per 1000s.
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time for the schedulers in the bandwidth disparity case in Figure 4.15. In the absence

of bandwidth variations, the WRR packet scheduler was able to provide a lower mean

flow transfer time than the RR flow scheduler. However, once we introduce bandwidth

variations, the flow schedulers were able to offer significantly lower flow transfer times

than all the other packet schedulers.

4.5 Summary

In this chapter, we showed that the packet-based traffic engineering scheme is not

suitable for the mobile multi-homed network architecture. This is due to the fact

that the flow-splitting nature of packet-based switching causes significant number of

packet re-transmissions; which degrades TCP performance, in situations where there

are bandwidth and delay disparities in the wireless access links. Furthermore, the

throughput performance of packet-based traffic engineering is further degraded as

the number of link bandwidth variations increases.

Given the limitations of the packet-based switching scheme over the mobile multi-

homed network architecture, we argue that other traffic engineering schemes that

do not perform flow-splitting (e.g. the flow-based and user-based traffic engineer-

ing schemes) are more suitable for the mobile multi-homed network architecture.

Even though the packet-based switching scheme has a finer switching granularity,

we showed that even a simple round robin flow scheduler was able to provide better

throughput performance than all the other packet scheduling algorithms discussed in

this chapter.
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Chapter 5

Maximum utility flow-based traffic

engineering

In this chapter, we propose a new MaxUtility flow scheduler that aims to maximize

both the system link utilization and flow fairness for the NEMO multi-homed sys-

tem. Extensive simulations show that the proposed MaxUtility flow scheduler can

provide better throughput performance and flow fairness than previously proposed

flow schedulers.

5.1 Introduction

Selecting the correct data switching scheme for the NEMO multi-homed system is an

important traffic engineering issue. As we saw in Chapter 4, the fine grain packet-

based traffic engineering scheme is highly unsuitable for the mobile multi-homed

systems, due to the constant packet re-transmissions at the end hosts that were caused

by the fluctuating link characteristics in the wireless access links. In our simulation

analysis, we showed that even a simple RR flow scheduler was able to out-perform all

the packet scheduling algorithms that were discussed in Chapter 4.

The focus of this chapter is to design a flow scheduler that aims to maximize

68
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both the system link utilization and flow fairness in the NEMO multi-homed system.

Maximizing the system link utilization is an important operator objective, since the

system will need to transfer large amount of user data over the bandwidth-limited

wireless access links. On the other hand, maximizing the flow fairness is an important

user objective as users will want to gain a fair share of the system bandwidth for

their data flows. As we will discover in this chapter, there are potential trade-offs

between these objectives and hence optimizing both objectives simultaneously is a

highly challenging problem.

The rest of this chapter is organized as follows. In Section 5.2, we formulate

the optimization problem of maximizing both the system link utilization and flow

fairness of the NEMO multi-homed system, by defining a new system utility index

which combines both objectives quantitatively. In Section 5.3, we present the details

of a new flow assignment algorithm that aims to maximize the system utility index.

In Section 5.4, we propose a new flow scheduler that implements link switching, where

the system re-schedules existing flows to different access links in order to maintain

a high system utility index. In Section 5.5, we further extend the flow scheduler

by utilizing link bandwidth predictions to assist the MR in making more proactive

flow scheduling decisions. In Section 5.6, we perform an extensive simulation analysis

on the proposed flow scheduler and discuss the significant findings in the simulation

results. In Section 5.7, we conclude this chapter with a summary of its contributions.

5.2 Problem formulation

The role of the MR in the flow-based traffic engineering scheme is to determine which

wireless access link the packets of each flow will be forwarded to, during the lifetime of
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the flow. In the previous chapter, we looked at the RR and WRR flow schedulers that

aimed to statically balance the data traffic load among the access links. However, we

argue that load-balancing solely concentrates on the distribution of the data traffic

load and does not directly address important operator and user objectives, such as

maximizing system utilization and maintaining flow fairness (respectively).

Therefore, we formulate the flow-based traffic engineering problem by defining two

new flow scheduling objectives that directly address the operator and user require-

ments in the NEMO multi-homed model. Firstly, given that the wireless access links

have scarce and highly dynamic bandwidth, the operator will want to maximize the

utilization of the system’s link bandwidth in order to service more users. Secondly,

given that there are a potentially large number of users contending for the limited

aggregate system link bandwidth, maintaining flow fairness in the system provides

each flow with a fair share of the bandwidth resources. In contrast to previously

proposed flow scheduling algorithms; which includes the RR flow scheduler [28] and

the WRR flow scheduler that were discussed in Chapter 4; we directly address both

the user and operator objectives in our flow-based traffic engineering design.

Before we formally define the two traffic engineering objectives, we first highlight

the assumptions that were made in the design of the proposed flow scheduler. The

flow scheduler was specifically design to schedule TCP flows only, since it had been

widely acclaimed that TCP flows make up most of the current Internet traffic [45–

48]. Focusing on the scheduling of TCP flows allowed us to make the following

assumptions. Firstly, we assume that once a TCP flow is mapped to an access link,

the Additive Increase Multiplicative Decrease (AIMD) nature of TCP ensures that

the flow will eventually utilize all of the link’s available bandwidth. Secondly, when
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multiple TCP flows are mapped to the same access link, it is assumed that the flows

will eventually get a fair share of the link’s available bandwidth due to the bandwidth-

competing nature of the TCP congestion control mechanisms. With a fair scheduler

in place, the assumption about TCP flows equally sharing the link bandwidth; which

may not be true for flows with different RTTs; is not necessary.

In addition, the aim of this chapter is to design generic flow scheduling algorithms

for the NEMO multi-homed model; hence, we do not make a distinction between

scheduling uplink and downlink data flows. The algorithms presented in this chap-

ter assume a generic system model where the flow scheduler is only concerned with

scheduling the users’ data flows over a set of bandwidth varying access links. If the

NEMO multi-homed architecture implements the appropriate mechanisms to support

downlink flow-based traffic engineering control (as we will see in Chapter 7), the flow

scheduling algorithms presented in this chapter can be used to schedule both the

on-board users’ uplink and downlink data flows.

We now proceed to provide formal definitions of the flow scheduling objectives.

The system link utilization measures how much of the system’s aggregate bandwidth

has been utilized by the MR. Following our first assumption on TCP flows; where it is

assumed that a TCP flow can fully utilize the bandwidth of an access link; the system

link utilization is determined by the set of access links that are currently utilized for

data transfer in the MR. Hence, we define the system link utilization index as:
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U =

N∑
j=1

zjbj

N∑
j=1

bj

(5.1)

subject to

zj =

{
1 if nj > 0

0 otherwise
(5.2)

where U is the system link utilization index; zj indicates whether a flow has been

mapped to link j; N is the number of access links in the system; bj is the available

bandwidth in link j; and nj is the number of flows mapped to link j.

The flow fairness measures how evenly the bandwidth resources are allocated to

each data flow. To calculate the flow fairness in the system, we use a varied form of

the highly popular Jain’s fairness index [49]. The original form of the Jain’s fairness

index is defined as:

J =

[ K∑
i=1

xi

]2

K

K∑
i=1

x2

i

(5.3)

where J is Jain’s fairness index; xi is the bandwidth share for flow i; K is the number

of active flows in the system;

Based on the second assumption on TCP flows; where we assumed that TCP

flows mapped to the same access link will eventually get a fair share of the link’s

bandwidth; we modified Jain’s fairness index function to allow us to measure the flow

fairness based on the Link Distribution Vector (LDV). The LDV is a set of mappings
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which tells us the number of flows currently mapped to each of the access links. The

modified version of Jain’s fairness index is defined as:

Jn =

[∑N

j=1
nj

bj

nj

]2

K
∑N

j=1
nj

[
bj

nj

]2
(5.4)

=

[∑N

j=1
bj

]2

K
∑N

j=1

b2
j

nj

(5.5)

subject to

N∑
j=1

nj = K , ∀nj ∈ N (5.6)

where Jn is the revised Jain’s fairness index; K is the number of active flows in the

system; N is the number of links in the system; bj is the current bandwidth in link

j; and nj is the number of flows mapped to link j

Maximizing both the system link utilization and flow fairness for the NEMO

multi-homed system is a non-trivial optimization problem, since there is a potential

tradeoff between these objectives. For example, consider a system with two access

links (link A and link B) where their current available bandwidths are 9MBps and

1MBps respectively. There are two active flows in the system and the MR needs to

make a decision on how to map these data flows among the two access links. To

achieve maximum flow fairness (i.e. Jn = 1), the MR can assign both flows to either

link A or link B, where the resulting system link utilization index will be 0.9 and 0.1

respectively. On the other hand, to maximize the system link utilization index (i.e. U

= 1), the MR needs to assign a single flow to each link, which will result in a rather low

flow fairness index of 0.61. If we consider another example where the current available
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bandwidths are identical in each link, we can achieve full system link utilization and

a maximum flow fairness index by scheduling a flow to each link. Therefore, we can

see that there is a potential trade-off between maximizing flow fairness and system

link utilization. Given the potential trade-off between these two objectives, we define

a system utility function that quantitatively captures both objectives:

utility = α U +β Jn (5.7)

where α represents the utilization weight factor; and β represents the fairness weight

factor.

We aim to maximize both the system link utilization and flow fairness by designing

a flow scheduler that aims to maximize the system utility index. The weight factors

allow the system to prioritize one objective over another. However, since it is up

to the mobile network operator to decide on how to prioritize these two scheduling

objective; which may be influenced by a range of cost, political, or management

factors; the question of how to set these two weight parameters is an open issue that

is beyond the scope of this thesis. For example, the system operator may prioritize

system link utilization over flow fairness since the operator may want to put more

data through its system in order to serve more users. In contrast, one can argue

that an unfair system will reduce user satisfaction, and therefore the mobile operator

may decide to set a higher fairness weight factor in the system in order to maximize

user satisfaction. Since these are non-technical issues, we therefore assume that α

and β are both equal to one in future discussion. However, please note that the flow

scheduling algorithms proposed in the rest of this chapter can all be applied even if

the weight factors are set differently.
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5.3 Flow scheduling without link switching

In this section, we discuss the design of the newly proposed MaxUtility flow scheduler.

The role of the MaxUtility flow scheduler is to schedule new flows in a way that aims

to maximize the system utility index.

For all incoming packets arriving at the flow scheduler, the system first performs a

lookup in the flow switching table to see if there is an existing entry for the FlowID

of this packet, which is a unique combination of the packet’s source IP address,

destination IP address, source port number, and destination port number. If there is

an existing entry in the flow switching table for this FlowID, the MR will forward

the packet to the access link that is mapped to this flow. If the packet is from a

new flow, the MR will trigger its flow assignment algorithm to decide which access

link this new flow should be mapped to. It will then create a new entry in the flow

switching table, so that all subsequent packets from this flow will be forwarded to the

selected access link.

In contrast to the RR and WRR flow schedulers that were discussed in the previ-

ous chapter, the proposed MaxUtility flow scheduler makes dynamic flow assignment

decisions based on the current state of the access links. Using this information, the

MaxUtility scheduler utilizes our newly proposed MaxUtilityAssign flow assignment

algorithm that aims to assign new flows which maximize the current system utility in-

dex. The pseudo-code for the proposed MaxUtilityAssign flow assignment algorithm

is shown in Algorithm 1.

The MaxUtilityAssign flow assignment algorithm first calculates the expected sys-

tem utility index for each access link. The expected system utility index is calcu-

lated based on the assumption that the system has admitted the new flow to the
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Data : New flow with FlowID; Flow Switching Table: FST; Link Bandwidth
Table: LBT

Result : Flow Switching Table: FST

Initialize maxUtility = 0, maxUtilityLink = NA;
Extract current set of nj from FST, store in curLDV ;
for each link ∈ LST do

Increase curLDV [link] by one;
Compute temUtilization from curLDV and LBT;
Compute temFairness from curLDV and LBT;
Let temUtility = temUtilization + temFairness;
Reduce curLDV [link] by one;
if temUtility >= maxUtility then

Set maxUtility = temUtility;
Set maxUtilityLink = link;

end

end

Add new mapping (FlowID to maxUtilityLink) to FST;
Return FST;

Algorithm 1: MaxUtilityAssign flow assignment algorithm

selected link in the current system state. The input of the computation are the

current bandwidth values of the available access links; which is represented by the

LinkBandwidthTable; and a modified LDV where we increased the number of flows

mapped to the selected link by one. The scheduler calculates the expected system

utility index for each access link, and assigns the new flow to the access link which

generates the highest expected system utility index. By assigning flows that maxi-

mize the expected system utility index, we expect that the MaxUtility flow scheduler

will provide a higher system link utilization and flow fairness for the system.

Since the MaxUtilityAssign flow assignment algorithm is only required to compute

the expected system utility index for each access link, the algorithm has a compu-

tation complexity on O(N). This can be considered a O(1) algorithm (i.e. constant

computation complexity), as it is unlikely that a NEMO multi-homed system will be
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Figure 5.1: Flow re-scheduling in the NEMO multi-homed architecture

attached to a large number of access networks.

5.4 Flow scheduling with link switching

5.4.1 Motivation

As discussed in Chapter 3, one of the traffic engineering challenges for the NEMO

multi-homed system is to adapt to the dynamic link characteristics of the wireless ac-

cess links. Also, since the MR performs flow assignment upon the arrival of a new flow

(i.e. before data traffic are sent by the user), the MR will not be able to determine

the flow duration at the flow assignment phase. With these dynamic characteristics,

the flow scheduler may not be able to maintain a high system utility index by just

maximizing the system utility index in its flow assignment phase. Therefore, in order

to adapt to the network resource variations and the flow dynamics, we proposed the

use of link switching in the flow scheduler. Link switching allows the flow scheduler

to re-schedule existing flows to different access links in order to maximize the system

utility index. The bi-directional tunneling nature of the NEMO multi-homed archi-

tecture provides the MR with the capability to re-schedule users’ data flows without

breaking the end-to-end flow semantics. Figure 5.1 illustrates the flow re-scheduling
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process.

One of the benefits of the flow-based traffic engineering scheme is that out-of-

order packet arrivals are minimized since the MR does not perform flow-splitting.

However, when the MR re-schedules a flow from one link to another, the packets may

be re-ordered since there are disparities in the performance characteristics of each

access link [17]. The out-of-order problem will occur if the packets scheduled on the

new link arrive at the end-hosts ahead of the packets scheduled on the original link.

But since most current TCP implementations have a receiver buffer at the end hosts,

there needs to be a certain amount of out-of-order packet arrivals at the end hosts

to cause the TCP sender to trigger packet re-transmissions; and in the worst case,

causes the TCP sender to go through the slow-start phase again. Thus; in contrast

to the previous assumptions that all flow re-scheduling causes out-of-order packet

arrivals at the end hosts [17]; we believe that there are only certain cases of flow re-

scheduling which will affect the throughput performance of the data flows. To clarify

this view, we simulated various flow re-scheduling schedules scenarios (with different

link disparities) in NS2 to see its effects on the performance of TCP flows. The

simulation architecture is shown in Figure 5.2. Our focus was to investigate whether

a CWD-Reset occurred during the flow re-schedule. We define a CWD-Reset as the

case where the size of the TCP sender congestion window drops to 1. This is the

worst case scenario for TCP flows, since the TCP sender will need to go through the

slow-start phase again and consequently, TCP throughput will be severely degraded.

In the flow re-scheduling simulations, we first initiated a 50MB file transfer (using

the FTP and TCP protocol) between a user and its corresponding node from time 1s.

A relatively large file size was chosen to allow the TCP congestion control mechanism
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Figure 5.2: NS2 simulation architecture for the flow re-scheduling simulations

to stabilize before the flow is re-scheduled; which allows us to study the effects of

packet re-ordering on the actual TCP protocol. At the start of the file transfer, the

MR forwarded the data traffic from this flow onto link 1. At time 50s; where the TCP

congestion control CWD value has stabilized to within a predictable range; the MR

re-scheduled the flow by forwarding the subsequent packets to link 2. The simulations

were terminated when the file had been successfully transferred.

A 3-dimension plot of the number of CWD-Resets versus the links bandwidth

and propagation delay disparities is shown in Figure 5.3. The bandwidth and delay

parameters that are shown in the x and y axis respectively, are the relative differences

between the corresponding parameter between link 2 and link 1. For example, a

bandwidth value of +1Mb means that the bandwidth parameter set in link 2 is 1Mb

higher than that of link 1, and a delay value of -10ms means that the delay value

of link 2 is 10ms less than that of link 1. As we can see from the graph, there are

basically two regions in the graphs. Since we used identical simulation parameters in

all of the simulation runs (except for the bandwidth and delay variables), the relative

difference in the number of CWD-resets show us which type of flow reschedules will

have an effect on the TCP flows. More precisely, the higher region in the graph
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shows the re-scheduling scenarios where the user’s TCP flow experienced a CWD-

Reset, hence causing it to have 1 more CWD-reset than the other flow re-scheduling

scenarios. What we can conclude in this graph is that there are only a limited number

of flow re-scheduling cases in which the user’s TCP flow will be affected.

To determine which types of flow re-schedule scenarios will cause a CWD-reset

for the users’ data flows, the MR needs to take into consideration the end-to-end flow

parameters of each individual user. These parameters include: propagation delay;

bandwidth; queuing conditions; and receiver buffer size for every flow. The end-to-

end parameters are not easily accessible in the MR. For example, to gain each flow’s

end-to-end propagation delay parameters, the MR will need to actively probe [50–52]

the end points of the flow (i.e. the end-to-end users). Even if the probing mechanisms

are implemented in the MR, the MR will need to constantly probe these end-to-end
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parameters since the values will be varying continuously when the system is in transit.

Therefore, we believe that it will be highly un-scalable for the MR to probe such

information for all the active flows in the system. Also, it is not worth the efforts for

the MR to do this in order to avoid a small subset of flow reschedule cases where the

user will experience a CWD-reset.

5.4.2 Link switching framework

The dynamic nature of the wireless access links and non-predictable flow departures

means that the system utility index will fluctuate during the trip. To maintain a

high system utility index, we propose an adaptive flow scheduler which periodically

monitors the system utility index and re-schedules the existing flows in situations

where the system utility index can be improved. The design of the link switching

flow scheduler framework is shown in Figure 5.4.

In the proposed link switching flow scheduler framework, the MR continuously
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monitors the incoming packets and triggers the flow assignment algorithm upon the

arrival of a new flow. The flow assignment algorithm determines which link the new

flow will be mapped to, and creates an entry in the flow switching table so that sub-

sequent packets will be forwarded to the selected link. Concurrent to this, the system

periodically monitors the system utility index and determine whether the system util-

ity index can be improved by re-scheduling the existing flows. To do this, the system

uses alink distribution algorithm to calculate a LDV that maximizes the system util-

ity index in the current system state. The computed LDV represents what the link

distribution algorithm considers as the desired set of mappings that will maximize

the system utility index in the current system state. If the link distribution algorithm

computes a LDV that produces a higher system utility index than the current utility

index, the system will trigger its flow re-scheduling algorithm to re-schedule all the

existing flows from the current LDV to the desired LDV. The modular design of the

framework allows the system to select various implementations of the flow assignment

algorithm, link distribution algorithm, and flow re-scheduling algorithm that are in-

dependent of one another. As we have already proposed the MaxUtilityAssign flow

assignment algorithm in the previous section, we will design a new link distribution

algorithm and flow re-scheduling algorithm in the next subsection.

5.4.3 Link switching algorithms

Link distribution algorithm

To determine whether re-scheduling existing data flows can improve the system util-

ity index, the system first needs to utilize a link distribution algorithm to compute

a desired LDV that maximizes the current system utility index. Once this is com-

puted, the system can use the resultant system utility index to determine whether
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re-scheduling the existing flows will improve the current system utility index.

To find the optimal LDV that produces the highest system utility index in the

given system state, one can go through all possible combinations of LDV (i.e. nj)

and select the LDV which produces the highest system utility index. This has a

computation complexity of approximately O(NK), which makes it unsuitable for real-

time computation since the value of K (i.e. the number of active flows) can be very

high. We can significantly reduce the LDV solution space by solving Equation.(5.5)

with Lagrangian relaxation:

f(nj) =K

N∑
j=1

b2
j

nj

+ λ(
N∑

j=1

nj − K) , ∀nj > 0 (5.8)

Solving the partial derivatives,

df

dnj

= − b2
j

n2
j

+ λ = 0 (5.9)

df

dλ
=

N∑
j=1

nj − K = 0 (5.10)

λ =
b2
j

n2
j

⇒ nj =
bj√
λ

(5.11)

N∑
j=1

nj =

∑N

j=1
bj√

λ
=

∑N

j=1
bj

bj

nj

(5.12)

∴ nj =K
bj∑N

j=1
bj

, ∀nj > 0 (5.13)

The above computation produces the ideal allocation of nj, on the assumption

that each access link will be utilized. To find the maximum possible system utility

index in the current system state, the system now only needs to compute the optimal
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LDV (using Equation 5.13) for all possible combinations of access link selections, and

choose the LDV that provides the maximum system utility index. We call this the

MaxUtilityLDV approach. There are only O(2N − 1) number of access link selections

and therefore, this approach has significantly reduced the entire solution space from

to O(NK) to O(2N − 1). Given that we expect the number of links attached to the

MR to be relatively low in relation to the computation complexity (i.e. N less than

10), this approach will be suitable for real time computation.

However, the computed LDV can be fractional in the above computation. There-

fore, the system may need to convert the solution to an integer solution if the com-

puted LDV contains fractional values. This is because the flow-based traffic engi-

neering scheme does not allow mapping partial flows onto the different links (i.e.

flow-splitting). To convert the fractional LDV to an integer LDV, we propose a LDV

round off heuristic LdvRoundOff that aims to find the integer LDV which yields the

highest system utility index. The details of the LdvRoundOff heuristic is shown in

Algorithm 2.

The intuition behind the proposed LdvRoundOff heuristic is to search for the

closest integer solution around the optimal fractional LDV. The quadratic nature of

the utility function means that the optimal integer LDV solution will be very close

to the optimal LDV solution, and hence the idea is to greedily select the integer LDV

around the optimal fraction LDV solution that yields the highest system utility index.

The heuristic first greedily adjust the fractional values in the optimal LDV, and then

selects the integer LDV which yields the highest system utility index for the system.

The combined computational complexity for the MaxUtilityLDV approach and

the LdvRoundOff heuristic is approximately O(2N + N − 1), which is equivalent to



85

Data : Fractional link distribution vector (FLDV), Link Bandwidth Table
(LBT)

Result : Integer link distribution vector (ILDV)

Initialize numFractionalFlows = 0, numCeiledFlows = 0;
for each nj ∈ FLDV do

numFractionalFlows += nj ;
numCeiledFlows += ceil(nj);
Store ceil(nj) in ILDV;

end

Let w = numCeiledFlows - numFractionalFlows;
for i ← 1 to w do

Let maxUtility = 0, maxLinkDistVector = NA;
for each nj ∈ ILDV do

Decrease nj in ILDV by one;
Compute temUtilization from ILDV and LBT;
Compute temFairness from ILDV and LBT;
Let temUtility = temUtilization + temFairness;
if temUtility >= maxUtility then

Let maxUtility = temUtility;
Let maxLinkDistVector = ILDV;

end

Increase nj in ILDV by one;

end

Set ILDV = maxLinkDistVector;

end

return ILDV;

Algorithm 2: Heuristic for rounding off optimal fractional link distribution vec-
tor
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a complexity of O(2N). As discussed previously, we do not expect this approach to

have a high computation complexity since it is unlikely that the MR will be equipped

with a large number of links. However, if the number of links is large enough to make

it unsuitable for real time computations, we proposed another heuristic that greedily

selects links that maximizes the utility index. The details of this heuristic is shown

in Algorithm 3.

Data : Link Bandwidth Table (LBT)

Result : New Link Distribution Vector
Initialize maxUtility = 0, maxLinkDistVector as empty map, selectedLinks as empty
vector;
Sort the links in LBT in descending current bandwidth value and store in
sortedLinks;
for each link ∈ sortedLinks do

add link to selectedLinks;
Compute curLDV from selectedLinks using maxUtility heuristic;
Compute temUtilization from curLDV and LBT;
Compute temFairness from curLDV and LBT;
Let temUtility = temUtilization + temFairness;
if temUtility >= maxUtility then

Set maxUtility = temUtility;
Set maxLinkDistVector = curLDV ;

end

end

return maxLinkDistVector;

Algorithm 3: Heuristic for maximizing utility function

The heuristic works by first sorting the link in descending bandwidth value. The

algorithm selects the link with the highest bandwidth in the sorted list and computes

the optimal LDV and the corresponding system utility index using the LDV round

off algorithm for the selected link. It then adds the next highest bandwidth link from

the sorted list to its selected link list, and computes the LDV and system utility index

using the LdvRoundOff heuristic. If the current system utility index is higher than
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the previously computed utility index, it will continue adding links to its selected link

list from the sorted list. Otherwise, it will cease the computation and use the selected

link as the target LDV. The proposed heuristic has a complexity of O(N).

Flow re-scheduling algorithms

If the link distribution algorithm determines that the system utility index can be

improved, the existing flows will need to be re-scheduled according to the new LDV.

Since the LDV only represents the number of flows that are mapped to each access

link, there are many possible ways in which the existing flows can be re-scheduled

from the current LDV to the new LDV. Therefore, we designed a new re-scheduling

algorithm that aims to minimize the number of link switches for the existing data

flows. We call this the MinLinkSwitch flow re-scheduling algorithm and the details

of this algorithm is shown in Algorithm 4.

The MinLinkSwitch flow re-scheduling algorithm goes through each entry in the

existing flow switching table and tries to maintain the same access link mapped to each

FlowID whenever possible. This will allow the system to minimize the number of flow

re-schedules. If the flow can be mapped to its original access link, the algorithm will

create an identical entry for this flow in the new flow switching table. Otherwise, the

flow is added to a list of the unmappedflowslist as the flow cannot be mapped to its

original access link. After the algorithm goes through every entry in the existing flow

switching table, the algorithm will go through the flows in the unmappedflowslist

and assign a valid access link for each of these flows. Once the new flow switching

table is fully created, subsequent packets of the existing paths will be forwarded to

the access links according to the new flow switching table.
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Data : Old Flow Switching Table: OldFST; Target Link Distribution Vector:
maxLDV

Result : New Flow Switching Table: NewFST

for each flowID ∈ OldFST do

set existLink = OldFST[flowID];
if maxLDV[existLink] > 0 then

decrease maxLDV[existLink] by one;
NewFST[flowID] = existLink;

end

else

add flowID to unmapList;

end

end

for each flowID ∈ unmapList do

for each linkID ∈ maxLDV do

if maxLDV[linkID] > 0 then

set NewFST[flowID] = linkID;
decrease maxLDV[linkID] by one;
break;

end

end

end

return NewFST;

Algorithm 4: Flow re-scheduling algorithm
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5.5 Predictive flow scheduling

One of the unique characteristics associated with PTVs; which is the main candi-

date for deploying the NEMO multi-homed systems; is that these vehicles repeatedly

traverse the same fixed route. As pointed out several times in this thesis, the main

challenge with flow scheduling in the NEMO multi-homed system model comes from

the highly dynamic link characteristics, that is caused by the movement of the vehicle

and the nature of wireless links. Therefore, the aim of this section is to see whether

the system can take advantage of the PTVs’ fixed route characteristic to improve its

flow scheduling performance.

Since the MR in the PTVs traverse fixed routes, it is logical to try and make

predictions on the link characteristics in each trip. This can be performed by analyzing

the data and trends recorded in past trips. We have made preliminary efforts to

predict the link characteristics over a live GPRS network and the details are presented

in Appendix C.

Figure 5.5 illustrates a sample bandwidth prediction graph for a single link, where

the predicted link bandwidth is plotted against the predicted time interval of a PTV

route. Instead of using the experienced bandwidth as we did in the previous section

(i.e. the LinkBandwidthTable), the flow scheduler can base its flow assignment

and re-assignment decisions on the predicted bandwidth of each access link. Rather

than reacting to degraded system utility index as a result of the link dynamics, the

flow scheduler can utilized the predicted bandwidth values to make proactive flow

scheduling and re-scheduling decisions that maximize the system utility index.

A limitation with using the predicted link bandwidth is that the actual band-

width values may sometimes be too volatile for the system to make accurate fine
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Figure 5.5: A sample bandwidth prediction graph

grain predictions on it. In fact, even if the predictions are accurate, the system will

be constantly re-scheduling its flows if it tries to increase its system utility index

according to the bandwidth variations. Hence, instead of using the predicted band-

width values, we proposed the use of predicted capacity instead. The term capacity

represents the amount of data that a link can send over a given time period. This can

be predicted by analyzing the throughput statistics measured in past trips; or if the

predicted bandwidth to time graph is given; it can be calculated by integrating the

time-bandwidth function. By monitoring the system utility index at regular intervals,

and making flow assignment and flow re-scheduling decisions based on the predicted

capacity over a fixed period of time (i.e. the monitoring period), the system will avoid

being over-sensitive to the actual predicted bandwidth values.

5.6 Simulation results and analysis

To simulate the performance of the proposed flow schedulers, a flow scheduling frame-

work for the mobile multi-homed network architecture was implemented in the NS2
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Figure 5.6: NS2 simulation architecture for the flow schedulers

simulation software [53]. The simulation model consists of a multi-homed system

connected to 5 access networks, whose range of bandwidth values are specified in

the simulation architecture shown in Figure 5.6. The proposed flow schedulers are

implemented in the MR, and the data traffic is modeled by sending data flows from

the on-board users to their CNs. To simulate the effects of network mobility, the

bandwidth of the access links were varied randomly from zero (representing outage)

to the maximum bandwidth of each access link. The bandwidth variations followed a

uniform distribution and the times between each variation (i.e. inter-variation times)

were exponentially distributed. For a fair comparison of the flow schedulers, we used

the same set of parameters for the simulations of the different schedulers under the

same simulation scenario.

5.6.1 Flow scheduling without link switching

In the first set of experiments, we compared the performance of our proposed MaxU-

tility flow scheduler with the RR flow scheduler (as studied in [28]); the WRR flow
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scheduler; and the Least Loaded Link (LLL) flow scheduler. The RR and WRR flow

schedulers were discussed in Chapter 4 and hence we will not discuss their implemen-

tation details again.

In contrast to the RR and WRR schedulers; where the schedulers do not utilize

any system state information in its scheduling decisions; the LLL flow scheduler makes

its scheduling decisions based on the current state of the flow scheduler. For every

new flow, the LLL flow scheduler assigns the new flow to the link with the minimum

number of flows currently mapped to it. The least loaded link can be derived from the

current flow switching table by counting the number of flows mapped to each access

link, and selecting the one with the minimum number of flows mapped to it. In the

case where there are multiple links with the same minimum load, our implementation

of the LLL flow scheduler assigns the new flow to the link with a higher maximum

bandwidth value.

To simulate on-board data traffic, users randomly started file transfers of fixed-size

(10Mb) files to their corresponding nodes. The flow start times were exponentially

distributed between 0-500 seconds and the simulations ceased when all the data flows

were transferred successfully. To obtain reasonable confidence in the simulation re-

sults, we performed 30 sets of experiments for each simulation scenario and used the

mean of the results in our analysis.

Figure 5.7 shows the mean flow transfer time versus increasing system load for

the MaxUtility flow scheduler and the other schedulers. In this set of experiments,

our focus was on the flow scheduling performance; therefore, the flow re-scheduling or

bandwidth prediction features were not implemented in the MaxUtility flow scheduler.

As expected, the RR flow scheduler had the highest mean flow transfer times among
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Figure 5.7: Number of flows versus mean flow transfer times for the RR, WRR, LLL,
and MaxUtility flow schedulers

the flow schedulers. As the load was increased, the mean flow transfer time of the

RR flow scheduler also increased significantly. The WRR flow scheduler had a lower

mean flow transfer time than the RR flow scheduler in all scenarios since the WRR

flow scheduler was able to map more flows to the higher bandwidth links.

The LLL flow scheduler showed some interesting behavior. In the low to medium

load scenarios (i.e. from 10 flows to 70 flows), the LLL flow scheduler matched the

performance of the MaxUtility flow scheduler since it was able to make use of the un-

utilized links whenever possible. But as the load increased from 70 flows to 100 flows,

the mean flow time increased significantly since the scheduler basically performed RR

scheduling when there are multiple flows mapped to each access link. Even without

implementing the link switching and bandwidth prediction schemes, the MaxUtility

flow scheduler outperformed all the other flow schedulers in most of the cases. As the
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100 flows simulation run
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load increased, the MaxUtility scheduler was able to maintain a similar mean transfer

times for the data flows by making better use of the access links.

Figure 5.8 and Figure 5.9 show traces of the flow fairness and system link uti-

lization index for the LLL and MaxUtility flow scheduler respectively, for one of the

simulation runs in the 100 flows scenario. The simulation termination times (i.e. the

x-axis values) were different for both sets of graphs since the MaxUtility flow sched-

uler was able to transfer all the flows in approximately half the time of the LLL flow

scheduler. The utilization traces showed a similar trend for the two flow schedulers,

where both were able to maintain a maximum utilization during the first 600 seconds

of the simulation. As the starting times of the data flows were uniformly distributed

between 0-500s, it is evident that both flow schedulers were able to utilize every access

link when the traffic demand was high. In contrast, the flow fairness index trace of

the MaxUtility flow scheduler was significantly higher than the LLL flow scheduler

during the same period. This is because the LLL flow scheduler assigned more flows

to the BS5 link than the MaxUtility flow scheduler; hence, the flow fairness index

of the LLL flow scheduler was severely penalized. In fact, the LLL flow scheduler

was assigning the flows to the access links in a RR manner in the situations where it

needs to schedule multiple active flows. After 1000s, when the MaxUtility scheduler

had finished transferring all the data flows, the LLL flow scheduler maintained a low

utilization index and a constant maximum flow fairness index of 1. This is because

the LLL flow scheduler was still transferring all the flows that were mapped to BS1,

which had a very little bandwidth compared to the other links. This significantly

increased the transfer times for the remaining flows that were mapped to BS1. In

contrast, the MaxUtility flow scheduler only scheduled a single flow to BS1 and hence
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it was able to provide a much lower transfer time for this flow. This highlights the

importance of enforcing flow fairness in the system, where the disparity among the

flow duration times will be minimized.

5.6.2 Flow scheduling with link switching

In the second set of experiments, we analyzed the performance and behavior of im-

plementing flow re-scheduling in the MaxUtility flow scheduler. Unlike the previous

set of experiments; where we simulated the transfer of multiple small fixed-size flows

in the system; we instead simulated the transfer of one large 100Mb flow for both the

MaxUtility flow scheduler and the MaxUtility-R flow scheduler with flow re-scheduling

capabilities. This allowed us to a take a closer look at the impact of flow re-scheduling

on the TCP flow performance of both schedulers. The MaxUtility-R flow scheduler

monitored the system utility index every second and it triggered the re-scheduling

algorithms whenever it detects that the system utility index can be improved. The

simulation parameters were consistent in the simulations of both schedulers and the

simulations were terminated after the data flow had been transferred successfully.

The link selection and flow throughput trace for the MaxUtility and MaxUtility-R

schedulers are plotted in Figure 5.10 and Figure 5.11 respectively. The link selection

trace is used to show the access links that were utilized by the flow schedulers for

data transfer during the flows lifetime. As expected, the MaxUtility flow scheduler

mapped the data flow to the same link (i.e. BS5) throughout the simulation since

re-scheduling was not implemented. In contrast, the MaxUtility-R flow scheduler

adapted to the link bandwidth variations by regularly re-scheduling the data flow in

order to maximize the system utility index.
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In the link selection trace, it showed that the MaxUtility-R flow scheduler re-

scheduled the flow from BS1 to BS4 at time 6s, and then re-scheduled the flow back to

BS1 at time 7s. However, the throughput trace showed that the MaxUtility scheduler

had a higher throughput than the MaxUtility-R scheduler during this period. This

is because the MaxUtility-R reacted to the slight bandwidth glitches in the BS1 link,

by re-scheduling the flow to BS4 which had a higher bandwidth at that point of time.

The system only utilized the higher bandwidth link for a very short period of time

(i.e. 1s) before re-scheduling the data flow back to BS1, and hence the TCP flow was

not able to make use of the higher bandwidth link.

At time 23s, the link selection graph shows that the MaxUtility-R scheduler re-

scheduled the flow from BS1 to BS2, and switched it back to BS1 at time 28s. This

time, the throughput of MaxUtility-R was doubled the throughput value of the MaxU-

tility flow scheduler during this period, since the TCP flow had more time to utilize

this higher bandwidth via its AIMD congestion control mechanism. This illustrates

the effectiveness of flow re-scheduling, where the system was able to provide a higher

throughput to the data flow by shifting the data traffic from a low bandwidth link to

a higher bandwidth link.

At time 79.16s and 89.03s, the throughput trace of the MaxUtility-R scheduler

showed significant performance improvement over the MaxUtility scheduler since there

were prolonged link outages in BS1 during that period. The MaxUtility-R avoided

the outage by scheduling the data flow to BS3 and BS2 during this period. Since the

simulation trace ended after the flow had been successfully transferred, we can see

that the flow transfer time of MaxUtility-R was approximately 20% lower than the

MaxUtility scheduler.
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5.6.3 Predictive flow scheduling
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Figure 5.12: Number of flows versus mean flow transfer time for the MaxUtility,
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In the third set of experiment, we simulated the performance of the MaxUtility-PR

flow scheduler, where both the flow re-scheduling and bandwidth prediction features

were implemented in the MaxUtility flow scheduler. To simulate bandwidth predic-

tion, we assume that the MaxUtility-PR scheduler had access to the expected time-

to-bandwidth graph from the current time (T ) to the prediction interval (T +P ). The

prediction period and the system monitoring period were both set to 1 second, and

the predicted capacity was calculated by integrating the time-to-bandwidth graph for

the prediction period.

The experiments were performed using the same user data traffic parameters as the

first set of experiments. We simulated the performance of the MaxUtility, MaxUtility-

P, MaxUtility-R, and MaxUtility-PR flow schedulers and their mean flow transfer time
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are shown in Figure 5.12. From the results, it is clearly evident that the implemen-

tation of flow re-scheduling provided a higher reduction on the mean flow transfer

time than the implementation of link prediction in the MaxUtility flow scheduler,

since flow re-scheduling allowed the system to adapt to the dynamic bandwidth in

the access links. The utilization of link bandwidth predictions in the MaxUtility-P

and MaxUtility-PR flow schedulers, provided marginal reduction on the mean flow

transfer time for their respective MaxUtility and MaxUtility-R non-predictive flow

scheduling counterparts.

The flow fairness index trace and the system utilization index trace of the MaxUtility-

R and MaxUtility-PR flow schedulers; for one of the simulation runs in the 100 flows

scenario; are shown in Figure 5.13 and Figure 5.14 respectively. For the MaxUtility-

R flow scheduler, there are many performance glitches (i.e. temporary performance

drops) in both the flow fairness index and system utilization index traces. These

glitches may be caused by a sudden change in the link bandwidth values, or the

termination of a particular flow. Since the MaxUtility-PR did not implement any

flow size prediction mechanisms, the flow fairness index and system utilization index

traces of the MaxUtility-PR shows that the use of bandwidth predictions allowed the

MaxUtility-PR to reduce both the size and number of performance glitches in the

system. The MaxUtility-PR flow scheduler was able to achieve this by making proac-

tive flow scheduling and re-scheduling decisions based on the predicted capacity of

the access links.
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Figure 5.13: Flow fairness index for MaxUtility-R and MaxUtility-PR schedulers in
a sample 100 flows simulation run
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5.7 Summary

The contributions of this chapter can thus be summarized as follows:

• We formulated the optimization problem of maximizing both flow fairness and

system link utilization under the NEMO multi-homed system, and showed that

there is a potential tradeoff between these two objectives. This trade-off is

captured quantitatively by defining a utility function that accounts for system

link utilization on the one hand, and flow fairness on the other.

• We proposed a MaxUtility flow scheduler, which employed an optimal flow as-

signment heuristic for maximizing the utility function. Given the dynamic na-

ture of the access links, we proposed a MaxUtility-R flow scheduler which reg-

ularly monitors the system and triggers a re-scheduling algorithm in the event

of sub-optimal performance. In contrast to the views in previous literature [17],

we also showed that in most of the cases, flow re-scheduling is not harmful to

TCP flows.

• Furthermore, to take advantage of the fact that PTVs regularly traverse fixed

routes, we proposed a MaxUtility-PR flow scheduler which utilizes the link

throughput predictions in its flow scheduling and flow re-scheduling decisions.

• By performing an extensive set of simulations in NS2, the results shows that our

proposed MaxUtility flow scheduler was able to achieve significantly a higher

system throughput and flow fairness than previously proposed flow schedulers

for the NEMO multi-homed systems. Also, the implementation of flow re-

scheduling was able to provide a larger reduction on the flow transfer times
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than the utilization of link throughput predictions in our proposed MaxUtility

flow scheduler.



Chapter 6

Profit optimization with

user-based traffic engineering

In this chapter, we present the design of two new user-based traffic engineering so-

lutions that aims to maximize the profit of the mobile hotspot operator under the

highly popular volume-based charging model, while maintaining bandwidth guaran-

tees for the on-board users. Our results shows having a prior knowledge on the link

bandwidth variations does not provide additional profit to the system, but instead it

allows the mobile hotspot to limit the service disruption probability for the users.

6.1 Introduction

Previous research on multi-homed systems, including the work presented in the flow-

based traffic engineering algorithms proposed in Chapter 5, mainly focused on design-

ing traffic engineering solutions that only maximizes the technical performance of the

system and users. To the best of our knowledge, the issue of profit and performance

optimization for the mobile hotspot operator has not been addressed before. We con-

tend that, given the proliferation of wireless service providers with diverse charging

rates, profit and performance optimization will be a key design requirement for traffic

104
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distribution computations in mobile hotspots.

In this chapter, we propose and compare two user-based traffic engineering schemes:

in-transit and pre-transit, which aims is to maximize the profit of the mobile hotspot

operator under a common charging model, while providing acceptable level of service

to the users. The in-transit scheme assumes no prior knowledge of potential network

changes that might occur during the trip and computes optimum traffic distribution

on-the-fly whenever a change is detected. In contrast, the pre-transit scheme exploits

a priori knowledge of all possible network changes along a known and repetitive

route of a PTV and computes the whole set of traffic (re)distributions before the

trip starts. We provide results from a detailed simulation study of these two schemes

under different user demands.

This chapter is structured as follows. In Section 6.2, we provide an in-depth

discussion on the mobile hotspot model. Section 6.3 provides the problem formulation

for profit and performance optimization under the mobile hotspot model. Section

6.4 presents the design of our proposed in-transit and pre-transit user-based traffic

engineering schemes. Section 6.5 provides details of our simulation platform and

highlights the significant findings in our results. In Section 6.6, we conclude this

chapter with a summary of its major contributions.

6.2 Modeling hotspots in public transports

6.2.1 Public transport user model

Our focus is primarily on deploying mobile hotspots in PTVs. To model the charac-

teristics of such systems, we formulated a system model illustrated in Figure 6.1.

The multi-homed mobile hotspot is assumed to be equipped with N network
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Figure 6.1: Mobile hotspot system model

interfaces, which can be used to connect to N different access technologies provided

by either the same service provider, or several different service providers. Different

service providers of the same access technology will also be considered multi-homing

since each service provider will deploy a different network infrastructure. The mobile

hotspot is assumed to be running a NEMO protocol [6], which provides transparent

network mobility to the on-board passengers. Users can only board the vehicle at

each station. The route between each station is defined as a segment. As the vehicle

travels along each segment, it will experience coverage and resource variations which

affect the set of available networks and the networks’ available bandwidths. There are

K number of these locations which are called variation points. Each variation point

has a resource vector Bn, which represents the available bandwidth of each network

at that location.

6.2.2 Quality of service model

In the multi-homed mobile hotspot, there are S service classes that are available to

the passengers. The service classes are similar to the home broadband (i.e. ADSL,
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cable) plans where users in each service class have a bandwidth limit (e.g. 56KBps

to 1.5MBps). These are represented by the service data rate vector Ds. When a

passenger boards the mobile hotspot at each station, they must indicate their service

class preference, which will be valid for the whole segment. The total number of

requests in each service class is represented by the requirements vector Rs.

6.2.3 Cost and charging model

Our research is based on the total volume charging scheme [54, 55]. In this charging

scheme, the access cost is calculated by applying a non-decreasing linear function over

the total volume used in that particular network. The scheme is simple yet highly

popular, as the charging model for most wired and wireless Internet access network

providers are based on some variants of the volume based charging scheme [19,56,57].

In our charging model, we assume that all the cost functions are expressed in terms

of price per unit of data transfer (e.g. cents per kilobyte).

The mobile hotspot offers S number of service classes to the passengers. To dif-

ferentiate the various service classes, we follow an approach similar to most home

broadband (i.e. ADSL, cable) plans [57] where the data rate of each user in a service

class is capped to a certain speed (e.g. 56KBps, 512KBps, 1.5MBps etc). The maxi-

mum data rates for each service class are represented by the service data rate vector

Ds, and the elements are sorted in ascending order such that users with a higher

service index s represents that they have a higher maximum data rate. The MR is

assumed to be capable of exhibiting user rate control over the access networks similar

to the gateways shown in [58,59].

In our model, we assume that all the available wireless access networks will follow
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the total volume based charging scheme. The network access cost vector Cn, repre-

sents the costs incurred (paid by mobile hotspot operator) for transferring each unit

of data on an wireless access network n. The vector Cn is sorted in ascending order,

and can contain identical values as there is no restriction preventing networks to have

identical charging functions.

Similarly, users in each service class are also charged according to the total volume

based charging scheme. The user service charge vector Us refers to the charges (paid

by users) for transferring each unit of service class s data via the mobile hotspot.

The vector Us is also sorted in ascending order but unlike Cn, elements in Us cannot

contain identical values as we want to differentiate the service classes strictly on its

costs and maximum data rates. Hence, users in a service class with a higher maximum

data will always pay a higher cost per data unit (transferred over the mobile hotspot)

than a user on a lower maximum data rate service class.

6.3 Problem formulation

6.3.1 Profit function

We define the profit function of the mobile hotspot operator to be the sum of the

differences between the user service costs and the network access cost in each network.

This basically means that mapping each unit of data traffic of service class s to

network n, will incur a different profit for the mobile hotspot operator. The profit

function of each network can be represented by:

αs,n = us − cn (6.1)
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where αs,n represents the mobile hotspot’s profit function for transferring each unit

of data service class s via access network n; us is the user service charge for service

class s; and cn is the network access cost for network n.

In the total volume based charging model, the actual profit obtained will depend

on the volume of different service class traffic passing through each network. There-

fore, the profit functions for the mobile hotspot operator are:

pk =
S∑

s=1

N∑
n=1

αs,nvs,n,k (6.2)

pT =
K∑

k=1

S∑
s=1

N∑
n=1

αs,nvs,n,k (6.3)

where pk represents the profit generated between each variation point k; pT represents

the total profit generated for the entire trip; and vs,n,k represents the total volume

transferred over network n for passengers in service class s between variation point k

and k + 1

The total profit P for the mobile hotspot operator will be the sum of all the

elements in the following profit matrix:

Ps,n =

⎛
⎜⎜⎜⎜⎜⎝

α1,1v1,1 α1,2v1,2 . . . α1,Nv1,N

α2,1v2,1 α2,2v2,2 . . . α2,Nv2,N

...
...

. . .
...

αS,1vS,1 αS,2vS,2 . . . αS,NvS,N

⎞
⎟⎟⎟⎟⎟⎠

where vs,n represents the total volume of service class s traffic transferred over network

n in the entire segment.
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6.3.2 Profit objectives

In the user-based traffic distribution scheme, profit maximization in the total vol-

ume based charging model is a challenging problem. As we have discussed in our

charging model, the profit functions depends on the amount of traffic transferred

over the wireless access networks. In the user-based scheme, the MR computes the

traffic distribution vectors before traffic is actually transferred over the wireless access

networks. Therefore, both schemes cannot compute the optimal profit maximization

traffic distribution vector without having a prior knowledge on the traffic volume

sent by each session. This brings the need to design some online profit maximization

heuristics for MRs using the user-based switching scheme.

However, as the profit functions depend on the volume of data traffic admitted

onto each network, optimum profit maximization is not possible since the passengers’

data usage pattern cannot be known in advance. Therefore, we propose a profit

maximization heuristic that determines the best number of users (in each service class)

to be mapped to each network (i.e. user traffic distribution). At each variation point,

the mobile hotspot computes a user traffic distribution vector Xs,n which determines

how many users of each service class s should be mapped to each access network n from

the current variation point to the next. Assuming all users exhibits a similar usage

pattern; where the actual usage U of each user can be modeled by some probability

distribution; the proposed profit maximization heuristic should perform well.

Assuming all users transfer the same volume of traffic over the mobile hotspot,

the total estimated profit P ′ will be the sum of all elements in the following matrix:
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P ′

s,n =

⎛
⎜⎜⎜⎜⎜⎝

α1,1x1,1 α1,2x1,2 . . . α1,Nx1,N

α2,1x2,1 α2,2x2,2 . . . α2,Nx2,N

...
...

. . .
...

αS,1xS,1 αS,2xS,2 . . . αS,NxS,N

⎞
⎟⎟⎟⎟⎟⎠

where xs,n represents the number of service class s users mapped to network n in the

entire segment.

6.3.3 Performance objectives

To ensure each passenger get an acceptable level of service, the mobile hotspot oper-

ator should aim to provide the advertised maximum data rate (in each service class)

to every user on-board. As the mobile hotspot does not have knowledge of the re-

source vectors in advance, it is virtually impossible for the mobile hotspot operator

to guarantee that each user will get their advertised data rate during the entire trip.

An interesting issue will be on the admission control of both schemes. Admission

control is performed at each station to determine the number of passengers admitted

onto the mobile hotspot, to ensure there are sufficient resources to serve the group of

users who are admitted onto the mobile hotspot. The admission vector As represents

the total number of users admitted in each service class. To measure the performance

of various admission control schemes, we introduce two metrics: service disruption

probability, and admission blocking probability. Firstly, a service disruption occurs

when a passenger’s data traffic cannot be mapped to any one of the mobile hotspot’s

access network connections, due to insufficient resources. Secondly, an admission

block occurs when a passenger’s request for data service is rejected by the admission

control scheme. The mathematical definitions of these two metrics are:
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βk =
S∑

s=1

(as −
N∑

n=1

(xs,n,k)) (6.4)

γ =

∑K

k=1
βk

K
∑S

s=1
as

(6.5)

δ = 1 −
∑S

s=1
as∑S

s=1
rs

(6.6)

where βk represents the number of service disruptions in variation point k; γ is the

service disruption probability; δ is the admission blocking probability; as is the num-

ber of service class s users admitted; and xs,n,k represents the number of service class

s users mapped to network n at variation point k.

6.4 Profit maximization schemes

The problem of profit maximization with given resource and request knowledge is a

classical Linear Integer Programming (LIP) problem. Hence, the proposed algorithms

presented in this chapter will be heavily based on LIPs. The difference between

the algorithms lies in the way the computations are performed, and the constraints

imposed on the models.

We have identified two schemes in computing the traffic distribution. In the

in-transit computation scheme, the MR computes the on-the-fly traffic distribution

decisions at each variation point. This scheme is suitable in situations where the

coverage and resource variations can only be detected when the mobile hotspot phys-

ically reaches the variation point. In contrast, the pre-transit computation scheme

computes a set of traffic distribution decisions at each station, for all the variation
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points in the segment. This scheme assumes the mobile hotspot to have a prior knowl-

edge on the coverage and resource variations. The resource vectors can be obtained

either using resource discovery [60] and/or resource reservation [61–63] protocols; or

to predict the network variations by using data mining techniques on data recorded

in past trips. The pre-transit scheme is only realistic for PTVs as they repeatedly

traverse the same route.

6.4.1 In-transit computation

The in-transit profit maximization algorithm (in-transit-PM ) computes a traffic dis-

tribution vector which aims to maximize the estimated profit at each variation point.

As the in-transit scheme assumes the mobile hotspot to have knowledge on the re-

source vector on arriving at each variation point, the proposed algorithm requires the

mobile hotspot to compute the following LIP model at every variation point to obtain

the traffic distribution vector Xs,n:

max
S∑

s=1

N∑
n=1

αs,n.xs,n (6.7)

subject to

S∑
s=1

(xs,n.ds) ≤ bn ,∀n = 1, . . . , N (6.8)

N∑
n=1

xs,n ≤ rs ,∀s = 1, . . . , S (6.9)

where S is the number of service class; N is the number of networks; αs,n represents the

profit function; xs,n represents the number of service class s users mapped to network

n at current variation point; ds represents the service data rate; bn represents the
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available bandwidth for network n; and rs represents the number of service class s

requests at each station.

The mobile hotspot can effectively control the service disruption probability by

enforcing an admission control policy based on the resource vector in the first variation

point. The proposed admission control extension (in-transit-PM-AC ) requires the

mobile hotspot to compute the in-transit LIP model (6.7 - 6.9) at the first variation

point. In subsequent variation points, the MR will compute the same LIP model with

constraint (6.9) replaced with:

N∑
n=1

xs,n ≤ as ,∀s = 1, . . . , S (6.10)

where as is the admission vector (i.e. the Xs,n computed at the first variation point).

6.4.2 Pre-transit computation

The pre-transit profit maximization algorithm (pre-transit-PM ) computes a traffic

distribution plan which aims to maximize the total profit in each segment. As the

pre-transit computation assumes the mobile hotspot to have prior knowledge on the

resource vectors in the segment, the mobile hotspot will perform the computation

once all the users have boarded the vehicle. To obtain the traffic distribution plan;

i.e. the set of Xs,n,k; the mobile hotspot will compute the following LIP at each

station:



115

max
K∑

k=1

N∑
n=1

S∑
s=1

αs,n.xs,n,k (6.11)

subject to

S∑
s=1

(xs,n,k.ds) ≤ bn,k (6.12)

∀n = 1, . . . , N,∀k = 1, . . . , K

N∑
n=1

xs,n,k ≤ rs (6.13)

∀s = 1, . . . , S,∀k = 1, . . . , K

where S is the number of service class; N is the number of networks; K is the number

of variation points; αs,n represents the profit function; xs,n,k represents the number of

service class s users mapped to network n at variation point k; ds represents the service

data rate; bn represents the available bandwidth for network n; and rs represents the

number of service class s requests at each station.

The admission control policy can be performed by taking into consideration all

the bandwidth vectors in the computation. This allows the mobile hotspot operator

to eliminate service disruptions, by enforcing a strict admission control policy in each

segment. This can be achieved by adding the following constraint to the previous

LIP:

N∑
n=1

xs,n,k =
N∑

n=1

xs,n,k+1 (6.14)

∀s = 1, . . . , S,∀k = 1, . . . , K − 1

This constraint basically eliminates service disruptions by restricting the sum of



116

the admitted user requests to be equal at every variation point of the segment. We

call this the pre-transit profit maximization with zero-service-disruption algorithm

(pre-transit-PM-ZSD).

6.5 Simulation results and analysis

6.5.1 Simulation model

We implemented the proposed traffic distribution algorithms in C++, which computes

the traffic distribution vectors based on a given system model as described in this

chapter. The implementation is linked to a commercial LIP optimization solver called

CPLEX [64]. We performed a set of experiments which investigated the effect of

increasing user demand on the profit and admission control performance dynamics of

the mobile hotspot. Our simulated system model consists of five access networks, in

which the network and service charges were fixed in all experiments. For each network,

resource variation was drawn from a uniform random distribution with thirty two

steps between zero and 10MBps. For each experiment, we conducted many simulation

runs and reported the average value to achieve acceptable confidence levels.

6.5.2 Profit performance

In Figure 6.2, we can see the in-transit-PM and pre-transit-PM computations have

identical profit performance, which shows the knowledge of the resource vectors in

the pre-transit scheme does not contribute any additional profit to the system. This

is because the objective function is not dependent on future resource vectors. In the

admission control extensions, we see that both algorithms also have identical profit

performance when there are sufficient networks (resources) available to the mobile
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Figure 6.2: Number of requests vs estimated profit

hotspot. However, as the number of requests increases to a level (i.e. 30 requests)

where there are insufficient resources to serve all of the requests, the in-transit-PM-

AC computation out-performs the pre-transit-PM-ZSD algorithm. This behavior is

due to the different admission control capabilities of both computation schemes. In

cases where the number of user requests exceed the amount of available resource, the

pre-transit-PM-ZSD computation’s admission control will admit less passengers than

the in-transit-PM-AC computation, since it needs to enforce a tighter constraint to

ensure the service disruption probability will be zero in all its computations. As a

result, the in-transit computation can achieve higher profit performance as it admits

more users than the pre-transit computation.
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Figure 6.3: Number of requests vs service disruption probability

6.5.3 Service disruption

Next, we measured the service disruption probability for both computations. For

this metric, we will not discuss the pre-transit-PM-ZSD algorithm, since it is able

to enforce zero service disruption probability in all computations. In Figure 6.3,

we can see the in-transit-PM and pre-transit-PM algorithms have identical service

disruption probability throughout the experiments, as both of them do not attempt

to provide any kind of admission control in their computation. The in-transit-PM-AC

computation is able to provide zero service disruption probability, in cases where there

are sufficient network resources available to the mobile hotspot. As the number of

user requests increases, the service disruption probability increases. But the increase

seems to be no-linear and there appears to be an upper bound (i.e. 15%) on the
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Figure 6.4: Number of requests vs admission blocking probability

service disruption probability. This is due to admission control exhibited by the in-

transit computation at the first decision point. The significance of this finding is that

it allows the in-transit computation to provide passengers with an expected level of

service disruption. Consequently, the mobile hotspot can try to balance the trade-off

between the increased profit shown in Figure 6.2, with the bounded service disruption

probability shown in Figure 6.3.

6.5.4 Admission blocking

Finally, Figure 6.4 shows the admission blocking probability for both computations.

As expected, the in-transit-PM and pre-transit-PM algorithms will have a zero ad-

mission blocking probability as both will accept all user requests. The pre-transit-

PM-ZSD algorithm has a higher admission blocking probability than the in-transit-

PM-AC algorithm, due to the tighter admission control imposed by the computation.
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Another interesting trend is that both the in-transit-PM-AC and pre-transit-PM-ZSD

computation have similar admission blocking probability gradients as the number of

user requests increases. The difference between the values in these admission blocking

probability functions, directly contributes to the difference in profit performance and

service disruption probability discussed previously.

6.6 Summary

We have formulated a public transport mobile hotspot model to study the perfor-

mance of two proposed user-based traffic engineering schemes. The performance dy-

namics of these schemes in terms of profit and service disruption were studied through

simulations. There were three major contributions in this chapter:

• First, we presented the design of a new mobile hotspot model for public trans-

ports, and formulated an optimization problem which aims to maximize the

profit of the mobile hotspot operator in the volume-based charging model, while

satisfying the users’ bandwidth requirements.

• Secondly, we proposed the in-transit and pre-transit user-based traffic engi-

neering schemes, which aim to optimize both the profit and performance of the

mobile hotspot system.

• Thirdly, we performed extensive simulations to highlight the performance and

issues of the proposed algorithms, and showed that algorithms in the pre-transit

scheme does not provide additional profit to the system, but instead allows the

mobile hotspot to limit the service disruption probability for the users. Service

disruptions can be completely avoided at the expense of lower profit, if all



121

network changes are known a priori at the start of the trip by exercising strict

admission control.



Chapter 7

Inbound traffic control

In this chapter, we present the design of the Multi-Homed Downlink Control Protocol

(MH-DCP). The protocol allows the MR to exhibit traffic engineering control over

the on-board users’ downlink data traffic, under the flow-based and user-based traffic

engineering schemes in the NEMO multi-homed architecture.

7.1 Introduction

The bi-directional tunneling of the users’ data packets across the wireless access links,

allows the NEMO multi-homed network model to independently switch the on-board

users’ uplink and downlink data traffic over the wireless access networks. Packets

from the same data flow can be sent over different uplink and downlink paths without

breaking the flow’s end-to-end semantics. This opens up the opportunity for the MR

to exhibit traffic engineering control for the on-board users’ downlink data traffic.

There are two main reasons why the mobile hotspot would like to exhibit traffic

engineering control over the users’ downlink data traffic:

• Link asymmetry - Most of the currently available wireless access networks (e.g.

122
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GPRS, Third Generation Mobile Communication System (3G)) possess dispar-

ity in the uplink and downlink bandwidth. Since the performance metrics such

as system utilization and flow fairness are directly related to the bandwidth of

the access links, the system may need to perform independent uplink and down-

link traffic engineering control [65–67] in order to maximize these performance

metrics. For example, if the system implements the MaxUtility flow scheduler,

the MR may need to maximize two independent system utility indices for the

uplink and downlink data traffic.

• Flow asymmetry - In a lot of current user applications, the data traffic flows

are asymmetric in terms of the amount of data sent in the uplink and downlink

direction [68]. Applications which exhibit this characteristic include web surfing,

file transfer, and one-way multi-media streaming etc. The throughput difference

in each direction means that mapping the imbalanced uplink and downlink data

in the same access network may result in good switching performance in one

direction, and poor switching performance in the other. Therefore, the system

may need to tailor its traffic engineering solutions independently for the uplink

and downlink direction.

To exhibit downlink traffic engineering control, the MR needs to send its traffic

engineering instructions to the MRHA so that the MRHA can switch the on-board

users’ downlink data traffic accordingly. To support this, we proposed a new signal-

ing protocol named Multi-Homed Data Control Protocol (MH-DCP) that allows the

MR to control the on-board users’ downlink data traffic in the NEMO multi-homed

architecture. In this chapter, we present the design of the signaling messages and

discuss the signaling procedures for the different operation scenarios that will arise
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when the MR performs downlink traffic engineering control.

The proposed MH-DCP protocol supports both the user-based and flow-based

traffic engineering schemes. It was not designed to be used with the packet-based

traffic engineering scheme since it will be highly un-scalable for the protocol to send

downlink control messages on a per-packet basis. As the traffic engineering solutions

proposed in this thesis were designed to be independent of the data traffic direction,

the MH-DCP protocol allows the MR to apply any of the user-based and flow-based

traffic engineering algorithms that were proposed in this thesis, to control the on-

board users’ downlink data traffic.

Since the MH-DCP protocol supports both the user-based and flow-based traffic

engineering schemes, we will use the term session to describe either a flow or user as

the downlink control unit in the MH-DCP protocol. The term session switching table

will also be used to represent either the user switching table or the flow switching

table according to the context of the traffic engineering scheme discussed.

The outline for the rest of this chapter is as follows. In Section 7.2, we present

the design details of the various message formats used in the MH-DCP protocol. In

Section 7.3, we provide an in-depth discussion on the MH-DCP signaling procedures

for the various operation scenarios that will arise when the MR performs downlink

traffic engineering control. Finally, in Section 7.4, we conclude this chapter with a

summary of its contributions.



125

Figure 7.1: MH-DCP message header

7.2 Message design

The general message header for the MH-DCP protocol is illustrated in Figure 7.1.

All the signaling messages used in the MH-DCP protocol share this common header

format. The MH-DCP message header contains 4 main fields: message type field,

traffic engineering mode (TE-mode) field, TCP-flag field, acknowledgment flag (ACK-

flag) field, and record count field.

The message type field stores a numerical message ID that is used to identify one

of several message types used in the MH-DCP protocol. The 4 bits field supports the

definition of 16 different message types in the MH-DCP protocol. At the moment,

there are only 6 message types defined for the current version of the MH-DCP pro-

tocol, and the mappings between the message ID and their corresponding message

types are defined in Table 7.1. Details on the usage of each of these messages will be

discussed in the protocol operation section.

The TE-mode field is used to identify whether the user-based or the flow-based

traffic engineering scheme is used. Table 7.2 provides a list of all the traffic engineer-

ing mode mappings that are defined in the current version of the MH-DCP protocol.

The TE-mode field is also used to assist the decoding of the session records in the

message payload. For example, as we will discuss in the next section, both the ses-

sion initialization and session re-schedule messages utilized session-to-link records to
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Message ID Message type
0 Acknowledgement
1 Session initialization
2 Session re-schedule
3 Session termination
4 Downlink update
5 Session table update

6-15 Unused

Table 7.1: MH-DCP message ID field types

Traffic engineering ID Traffic engineering scheme
0 User-based scheme
1 Flow-based scheme

Table 7.2: MH-DCP traffic engineering modes

control the downlink traffic on a per-session basis. Depending on the traffic engineer-

ing scheme used, the session-to-link records are different in size. Hence, the MRHA

must read the TE-mode field in the MH-DCP message header before it can read the

session-to-link records correctly.

For the user-based traffic engineering scheme, the session-to-link record contains

a mapping between an on-board user IP, and the IP address and port number of the

access link in which the session is mapped to. Note that the MH-DCP protocol utilizes

128 bits IPv6 addresses, which results in a session-to-link record size of 272 bits (or

34 bytes). The session-to-link record format for the user-based traffic engineering

scheme is shown in Figure 7.2.

For the flow-based traffic engineering scheme, the MR needs to write the entire

flowID; i.e. the flow’s source IP, source port number, destination IP, and destination
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Figure 7.2: MH-DCP session-to-link record for user-based traffic engineering scheme

Figure 7.3: MH-DCP session-to-link record for flow-based traffic engineering scheme

port number; in the record which results in a total session-to-link record size of 432 bits

(or 54 bytes). The session-to-link record format for the flow-based traffic engineering

scheme is shown in Figure 7.3.

The MH-DCP signaling protocol uses User Datagram Protocol (UDP) as its de-

fault transport layer protocol. The system has the option of using TCP by setting

the TCP-flag in the message header. For the highly adaptive flow-based traffic engi-

neering solutions such as the MaxUtility-R and MaxUtility-PR flow schedulers; which

maximizes the system utility index by regularly re-scheduling the existing flows to

different access links; the recommendation is to use UDP as the underlying transport

layer protocol. The advantage with using UDP is that the protocol does not require

any connection establishment and termination procedures. This makes it more suit-

able for the highly dynamic traffic engineering solutions such as the MaxUtility-R

and MaxUtility-PR flow schedulers, which will utilize a lot of MH-DCP messages to

update the session switching tables in the MRHA.
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The limitation with UDP is that data reliability is not implemented. For the

flow-based traffic engineering solutions, MH-DCP message reliability may not be a

crucial factor since losing MH-DCP messages will only result in sub-optimal downlink

traffic performance for a relatively short period of time. In contrast, the less dynamic

solutions such as the in-transit and pre-transit user-based traffic engineering schemes

may choose to use TCP as its underlying transport layer protocol, since TCP provides

full reliability support that ensures the MH-DCP messages arrive at the MRHA as

intended. The safe delivery of the MH-DCP messages is important in this case, since

the coarse switching granularity of the user-based traffic engineering scheme may

magnify the effects (and the duration) of degraded traffic switching performance as a

result of lost MH-DCP messages.

If the MR uses UDP as its underlying transport layer protocol, it has an addi-

tional option of enabling an acknowledgment mode that provides a very basic form of

MH-DCP message reliability. The acknowledge mode only supports one-way message

reliability for the MH-DCP messages sent from the MR, since the MRHA does not

send any traffic engineering control messages to the MR. To enable the acknowledg-

ment mode, the MR will need to set the ACK-flag in the MH-DCP message header

for all the messages it wished to be acknowledged by the MRHA.

The record count field is used for record aggregation purposes. Record aggregation

allows the MH-DCP protocol to transfer multiple message records inside one MH-DCP

message. The record count field stores the number of records that are transferred in

this message, and 10 bits are used to support the aggregation of 1024 records in each

MH-DCP message.

Finally, MH-DCP messages has the option to append message specific data in
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Figure 7.4: MH-DCP acknowledgment message

the message payload of the MH-DCP message. Apart from the acknowledgement

message, all the other message types defined in this version of the MH-DCP utilizes

the message payload. The message payload is appended after the message header,

in which the format and size of the message payload will differ between the different

message types and the TE-mode used.

7.3 Protocol operation

In this section, we will provide a detailed discussion on the signaling process for

the different operation scenarios in the MH-DCP protocol. We will start off our

discussion on the protocol operation of the MH-DCP acknowledgment mode, which

provides one-way message reliability for the messages sent by the MR to the MRHA.

We then discuss the signaling procedures required for the downlink session control

during various stages of the session lifetime. Finally, we will discuss the signaling

procedures involved with aggregate downlink traffic engineering control.

7.3.1 Message acknowledgement

To enable the acknowledgement mode, the MR needs to set the ACK-flag in the mes-

sage header of all the MH-DCP messages it sends to the MRHA. Upon receiving the
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MH-DCP messages with the ACK-flag set, the MRHA will need to send an acknowl-

edgement message back to the MR. The format of the MH-DCP acknowledgement

message is shown in Fig 7.4.

By enabling the acknowledgement mode setting in the MH-DCP message header,

the MR has the option to selectively choose which MH-DCP message requires to

be acknowledged by the MRHA. This allow the MR to prioritize the delivery of

certain control messages. For example, if the MR only wish to change the downlink

switching table for a single session, it may disable the ACK-flag in the message header

since the lost of the MH-DCP message may only have minimal effects on the system

performance. On the other hand, if the MH-DCP message have significant effects on

the user downlink traffic; i.e. updating the entire downlink session switching table; it

may decide to switch the acknowledgement mode on for this message.

If the ACK-flag is set for a particular MH-DCP message, the MR will need to

start a timeout timer after sending the message over one of its wireless access links.

If the MR does not receive an acknowledgement message from the MRHA within a

timeout period, the MR will need to re-send the previous message to the MRHA.

The message re-transmissions may be triggered by two possible cases. Firstly, if the

original MH-DCP message was lost, the re-transmitted message will allow the MRHA

to perform the instructions that were specified in the lost MH-DCP message from the

MR accordingly. In the second case, if the MH-DCP acknowledgement message sent

by the MRHA was lost, the MRHA will receive a duplicate of the previous MH-

DCP message. In this case, the duplicate message will not affect the downlink traffic

control in the MRHA since the MRHA had already processed the instructions in
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Figure 7.5: State diagram of the MH-DCP message acknowledgment mechanisms

the previous message. Hence, even if the MRHA does not recognized that this re-

transmitted message is a duplicate of the previous message, the processing of the

duplicate message will not lead to any actions taken by the MRHA.

To prevent the MR in re-transmitting excessive number of MH-DCP messages

to the MRHA; which can occur if the re-transmitted MH-DCP messages or the re-

transmitted acknowledgement messages are lost continuously; the MR may need to re-

strict itself to re-transmitting only a certain number of the same MH-DCP message to

the MRHA. To achieve this, the MR may need to maintain a re-transmission counter

for every re-transmission messages it sends to the MRHA. Furthermore, if there is

a new MH-DCP message scheduled in the MR during the re-scheduling process, the

MR should give strict priority to the new message by giving up the re-transmission

process immediately. This ensures that the MRHA does not process out-dated MH-

DCP messages caused by the message re-transmission process. Figure 7.5 provides

a full state diagram that captures the details of all the acknowledgement features

discussed.
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7.3.2 Downlink session control

In this section, we provide a detail discussion on the signaling process for the downlink

data traffic control during various stages of a session lifetime. To provide a logical

view on the use of the MH-DCP protocol operation for downlink traffic engineering

control, we divide the process into three stages:

1. Session initialization - For all new sessions, the MR and MRHA needs to decide

which wireless access network the new session should be mapped to in the uplink

and downlink direction. Once the MR makes a decision on this, it will need to

initialize its own uplink session switching table and communicate the downlink

control instructions to the MRHA, so that the MRHA can update its downlink

session switching table accordingly.

2. Session re-schedule - While the mobile hotspot is in transit, the control module

may wish to re-schedule a data session from one access network to another. To

re-schedule a session’s downlink traffic, the MR needs to inform the MRHA so

that it can modify its session switching table accordingly.

3. Session termination - When a session terminates, the MR and MRHA should

remove the session record in the uplink and downlink session switching tables.

This ensures that the session switching tables only contain records for the active

sessions, which will reduce the session lookup times for all incoming uplink and

downlink data traffic.

We will now discuss the protocol operation for each of these stages in detail.
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Figure 7.6: MH-DCP session initialization message format

Session initialization

In the session initialization phase, there are two different ways in which the sessions

can be established. For the flow-based traffic engineering scheme, the MR will trigger

its flow assignment algorithm once the MR detects the arrival of a new flow. In

contrast, the user-based traffic engineering scheme assigns users to the appropriate

networks when the users board the PTV and indicate their service preference. In both

scenarios, the MR will need to decide which downlink access link the new session will

be mapped to. Once a decision is made, the MR will need to send a MH-DCP session

initialization message to the MRHA, which contains the session-to-link records (i.e.

Figure 7.2 and 7.3) that needs to be created in the MRHAs downlink session switching

table. The message format for the MH-DCP session initialization message is shown

in Figure 7.6.

The MR has the option to send a session initialization message for either a single

session or multiple sessions. The number of session-to-link records can be indicated in

the record count field in the MH-DCP header. Upon receiving the MH-DCP session

initialization message, the MRHA will first read the TE-mode field in the MH-DCP

header to determine the correct session-to-link record format. It will then iterate

through the message payload according to the record count field and extract the
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Figure 7.7: MH-DCP session initialization process with acknowledgement mode en-
abled

session-to-link mapping accordingly. For each record, the MRHA will create the

appropriate entries in its session switching table so that subsequent data packets from

these sessions will be tunneled to the corresponding IP address and port numbers of

the access link.

If the acknowledgement mode is enabled in the session initialization phase, the

MR can utilize the acknowledgement message to probe the wireless access link before

forwarding the session’s data traffic over the target access link. This allows the MR

to ensure that the target access link is available before mapping a new session to it. A

more advanced approach can even allow the MR to make use of the acknowledgement

message(s) to measure the performance characteristics of the target access link, which

can be used to assist the MR in its traffic engineering decisions. A limitation with this

approach is that it creates an initialization delay for the data session. This process

is illustrated in Figure 7.7.
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Figure 7.8: MH-DCP session re-schedule message format

Session re-schedule

When the system is in transit, the MR may decide to re-schedule an existing session

from one access link to another. If the MR decides to change the switch the session’s

uplink traffic from one access link to another, the MR will need to modify its own

session switching table accordingly. To perform a session re-schedule on the downlink

data traffic, the MR needs to inform the MRHA by sending a session re-schedule

message to the MRHA. The format of the session re-schedule message is similar to

the session initialization message, and it is shown in Figure 7.8. When the MRHA

receives the session re-schedule message, it will iterate through the session-to-link

records and update the corresponding session records in its session switching table

accordingly.

The MH-DCP protocol provides a highly flexible framework for the MR to exhibit

downlink traffic control for the on-board users. Hence, there are various ways in which

the system can make use of the MH-DCP protocol to perform session re-schedule. To

illustrate how this can be done, we look at two types of session re-schedules scenarios.

Firstly, a soft session re-schedule occurs when both access links are still available for

data transfer during the session re-schedule, so that the data packets will continue to

be sent over the original link until the MR and MRHA re-directs the data packets to
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Figure 7.9: MH-DCP soft session re-schedule signaling procedure

the new interface. This usually occurs when the mobile hotspot decides to make a

session re-schedule for the sake of improving the system performance; i.e. the system

utility index. The second type of session re-schedule is the hard session re-schedule,

which occurs when the original link cannot be used during the session re-schedule.

This usually occurs in a more critical session re-schedule, where the mobile hotspot

must switch the passenger’s traffic over to a new interface since the original interface

has gone down, due to congestion or poor signal strength etc. To illustrate a complete

example of the signaling procedures for these two types of session re-schedules, we

assume that the MH-DCP acknowledgement mode is enabled.

Figure 7.9 illustrates the signaling involved with a soft session re-schedule. Basi-

cally, there are three major steps in this procedure:

1. The mobile hotspot system triggers a session re-schedule for session A. The MR
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sends a session re-schedule message to the MRHA, specifying the new session-

to-link record for the session and the details of the Universal Mobile Telecom-

munications System (UMTS) link. The uplink and downlink data continues to

be sent over the original GPRS interface.

2. The MRHA receives the session re-schedule message from MR, and modifies its

session switching table by updating the access link details for record of session A.

The MRHA sends an acknowledgment back to the MR, and starts re-directing

the data packets destined for session A to the current CoA for the UMTS link.

The downlink traffic is now being sent over the UMTS network.

3. Once the MR receives the acknowledgment message, it performs a session re-

schedule for session A so that all subsequent outgoing data packets from session

A are forwarded to the UMTS interface.

4. All the data transfer between session A and the CN are now being sent over the

UMTS link.

The signaling involved with a hard session re-schedule is a bit more complicated,

and is shown in Figure 7.10. Basically, there are four major steps in this procedure:

1. The MR detects a failure in the GPRS link, and triggers a session re-schedule

for session A. The MR sends a session re-schedule message to the MRHA over

the UMTS interface, containing the session-to-link record for session A and the

UMTS link. The data transfer for session A is temporarily disrupted since the

traffic cannot be routed over the original GPRS interface.
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Figure 7.10: MH-DCP hard session re-schedule signaling procedure

2. The MRHA receives this signal, and modifies its session switching table accord-

ingly. The MRHA sends an acknowledgment message back to the MR, and

starts re-directing the data packets destined for session A to the UMTS link.

3. Once the MR receives the acknowledgment message, it modifies its session

switching table for session A so that all subsequent data packets from session

A are now forwarded over the UMTS interface.

4. All the data transfer between User A and their corresponding nodes are now

sent over the UMTS link.

Session termination

At the end of a session’s lifetime, the MR and MRHA needs to remove the corre-

sponding entry from their session switching table. This is particularly important if

the system is using the flow-based traffic engineering scheme, since the system can

potentially be switching from hundreds to thousands of flows concurrently, and re-

moving the unnecessary records from the flow switching tables will reduce the session
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Figure 7.11: MH-DCP session termination message format

switching lookup time for each data packet.

Once a session has finished data transfer, the MR will need to inform the MRHA

about the session termination so that it can remove the corresponding entry from

its traffic distribution table. To do this, the MR needs to send a session termination

message to the MRHA. In contrast to the session initialization and session re-schedule

messages, the session termination message only needs to contain the terminated ses-

sion ID, which will be used by the MRHA to remove the corresponding entry in its

session switching table. Depending on the TE-mode value in the message header,

the session ID can either contain 128 bits for the user ID in the user-based traffic

engineering scheme, or 288 bits for the flowID in the flow-based traffic engineer-

ing scheme. Again, the MR can terminate multiple sessions by writing the number

of termination records in the record count field of the message header. The session

termination message format is illustrated in Figure 7.11.

7.3.3 Aggregate downlink control

There may be cases where the MR may wish to perform downlink traffic engineering

control on an aggregate level. The MH-DCP protocol provides aggregate downlink

control support by introducing two new MH-DCP procedures called the downlink



140

update and the session table update procedure. The downlink update procedure

allows the MR to control the aggregate downlink traffic on a per-link basis, while

the table update procedure allows the MR to replace the entire session switching

table in the MRHA. We will now discuss these two processes in detail.

Downlink update process

There may be situations where the MR may wish to modify the details of a particular

access link in the MRHA session switching table. This is called the downlink update

process, which requires the MRHA to change all the entries that are mapped to that

link in its session switching table. For example, the system may wish to perform a

downlink update when the system detects that a particular access link has gone down.

In this case, the MR may wish to inform the MRHA to re-schedule all the existing

flows that were mapped to the inactive link, to another access link attached to the

system. Another example scenario which requires a downlink update occurs when

an access network attached to the MR changes its CoA. Even though the standard

NEMO protocol takes care of the underlying mobility management for the MR, the

MR will still need to inform the MRHA so that it can update the link details for all

the session switching table entries that were mapped to the old CoA. This procedure

is illustrated in Figure 7.12.

Instead of sending a session re-schedule message for all the affected sessions; where

all the session-records will be pointing to the new access link details; a more elegant

solution will be for the MR to send a dedicated downlink update message to the

MRHA instead. The downlink update message can reduce the message payload size

considerably by specifying a downlink update record that only stores the original link

details and the new link details. The format of the downlink update record is shown
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Figure 7.13: MH-DCP downlink update record format

in Figure 7.13.

The MR can also perform multiple downlink updates. When the MR sends the

downlink update message to the MR, it can write the number of downlink update

records in the record count field of the MH-DCP message header. The format of

the downlink update message is shown in Figure 7.14. When the MRHA receives

a downlink update message, it will be able to determine the number of downlink

updates records in the record count field. The MRHA will then iterate through the

downlink update records, and lookup all the entries that were mapped to the old CoA

and replace these entries with the new link details.
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Figure 7.14: MH-DCP downlink update message format

Figure 7.15: MH-DCP link-to-sessions record format

Session table update process

Finally, session table update allows the MR to send the complete session switching

table to the MRHA in order to replace the entire downlink session switching table

in the MRHA. Session table update is particularly useful in the implementation of

the in-transit and pre-transit user-based traffic engineering schemes (as proposed in

Chapter 6), since both schemes computes traffic engineering solutions for the entire

group of users. The session table update allows the MR to send the entire downlink

session switching table to the MRHA. Also, session table update may also be useful

in cases where the MR detects (from the incoming data packets) that the MRHA is

not forwarding the user downlink data packets over the intended links, due to the

lost of MH-DCP messages. In this case, the MR may use session table update to

fully synchronize the MRHA session switching table with the its expected downlink

session switching table.
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Figure 7.16: MH-DCP session table update message format

To perform session table update, the MR needs to send a session table update

message to the MRHA, which contains a list of link-to-sessions records to represent

the entire session switching table. Each link-to-sessions record contains a mapping

between a particular access link details (i.e. IP and port number), and a list of all

the sessions mapped to that particular link. An entire session switching table can

be represented by storing the link-to-sessions records for all the access links attached

to the MR. The format of the link-to-sessions record and the session table update

message are shown in Figure 7.15 and Figure 7.16 respectively. To ensure that session

table update is applied correctly, it is recommended that the MR uses TCP to transfer

the session table update messages to the MRHA.

7.4 Summary

In this chapter, we presented the design of the newly proposed Multi-Homed Data

Control Protocol (MH-DCP), which allows the mobile hotspot to exhibit traffic en-

gineering control over the on-board users’ downlink data traffic in the NEMO multi-

homed architecture. This allows the MR to perform independent uplink and down-

link traffic engineering that takes into consideration the asymmetric link and user
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data traffic characteristics in the uplink and downlink direction. The proposed MH-

DCP protocol takes into consideration the session initialization, session re-scheduling,

and session termination phases for the user-based and flow-based traffic engineering

schemes. By implementing the MH-DCP protocol in the NEMO multi-homed ar-

chitecture, the MR can use any of the user-based and flow-based traffic engineering

solutions proposed in this thesis to control the on-board users’ downlink data traffic.



Chapter 8

Conclusion and future work

8.1 Conclusion

In this dissertation, it has been demonstrated that traffic engineering is a critical

research issue for the realization of multi-homed mobile networks. This dissertation

has provided extensive studies on designing traffic engineering solutions for the NEMO

multi-homed network under three different levels of traffic switching granularity. In

Chapter 4, it was clearly evident that the fine grain packet-based traffic engineering

scheme is not suitable for mobile multi-homed networks, due to the vast number of

packet re-transmissions that are caused by the performance disparities and dynamic

variations in the wireless access links. In Chapter 5, we proposed a MaxUtility flow

scheduler that was able to provide better throughput and flow fairness for the on-

board users than previously proposed flow schedulers. Extending features such as flow

re-scheduling and utilizing link predictions in the MaxUtility flow scheduler further

enhanced the throughput performance of the system. In Chapter 6, we proposed the

pre-transit and in-transit user-based traffic engineering schemes that were able to

maximize the profit for the system while maintaining bandwidth guarantees for the

on-board users. Finally, in Chapter 7, we designed a new Multi-Homed Data Control

145
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Protocol (MH-DCP) which allows the MR to exhibit downlink traffic engineering

control under the flow-based and user-based traffic engineering schemes.

8.2 Future work

We conclude this dissertation with an enumeration of several remaining future chal-

lenges in the design of traffic engineering solutions for the mobile multi-homed net-

works.

8.2.1 Web traffic analysis

The traffic engineering solutions proposed in this dissertation were not tailor-designed

towards any specific user data traffic patterns for the mobile multi-homed network

model. As the NEMO multi-homed network aims to provide Internet connectivity

to the on-board users, a potential future work may be to extend our proposed traffic

engineering solutions to address the specific characteristics of web data traffic models

[69–71], which are typically characterized by a mixture of short and long data flows;

i.e., the mice and elephant flows as discussed in [46, 47]. For the MaxUtility flow

scheduler, it may not be necessary to provide fairness for short data flows. Therefore,

the MaxUtility flow scheduler may implement a flow-size classifier that identifies short

and long data flows, and provide differential treatment to the flows according to the

flow-size classification [46,47]. For example, the MR may prioritize the scheduling of

short flows, by forwarding these flows to the fastest link in order to improve the overall

response time. Whereas for the long flows, the MR may use the proposed flow re-

scheduling algorithms in order to maximize the fairness and throughput of these flows.

Nonetheless, the consideration of user data patterns opens up another interesting
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traffic engineering research issue for the NEMO multi-homed network platform.

8.2.2 Link prediction algorithms

The results on the utilization of link predictions in the flow-based and user-based

traffic engineering solutions presented in this dissertation were obtained with the

simplifying assumption that the predicted bandwidth patterns were readily available

to the system prior in each trip. Since we did not consider any particular method on

how the actual link predictions can be obtained by the mobile network, an impor-

tant future research issue will be to design link prediction algorithms for the mobile

networks. The predictions can be computed by analyzing the historical data for each

trip, where patterns are likely to exist since PTVs traverses pre-defined routes re-

peatedly. In Appendix C, we started some preliminary work on data measurements

which investigated the correlation between the GPRS signal strength and various

environmental factors such as location, vehicular speed, and humility etc. From the

measurements collected in a test-bed that is connected to a live GPRS network, we

showed that GPRS signal strength is strongly related to the vehicle’s location in each

trip. Consequently, this finding may serve as a useful starting point for the research

on the design of link prediction algorithms.

As with any form of predictions, we can never guarantee that the predicted results

will be 100% accurate. Therefore, another important research issue is to investigate

the effects of link prediction inaccuracies on the performance of the various traffic

engineering solutions proposed in this dissertation. For example, it will be interesting

to see whether we can extend our proposed pre-transit user-based traffic engineering

scheme proposed in Chapter 6, by considering link prediction inaccuracy probability

models in its user admission control scheme. This will allow the mobile hotspot
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operator to decide on whether to over-provision or under-provision admitted users

accordingly.

8.2.3 Prototype implementation

Simulation studies performed in this dissertation only provided an abstract repre-

sentation of the real-world traffic engineering problem for the mobile multi-homed

network model. The purpose of the simulations is to allow us to perform preliminary

realization, verification and performance analysis on the proposed traffic engineering

solutions. Therefore, a possible future work will be to build a prototype test-bed

that serves as a live experimental platform for researchers in the NEMO research

community. Since there are no special hardware requirements in building a MR, the

MR prototype can be easily implemented using a Personal Computer (PC) or laptop,

which is connected to a group of PCs or laptops via wired or wireless technologies

to simulate an on-board LAN. The MR prototype can provide Internet connectivity

to the on-board LAN via a wireless access network connection that is subscribed to

either a single or multiple readily available wireless access networks; e.g. GPRS, 3G,

WLAN etc.

The On-board Communication, Entertainment, And Information (OCEAN) re-

search group [72] has started preliminary efforts on this by building a test-bed that

deploys their own implementation of the NEMO protocol [73]. This NEMO prototype

can be easily extended to include multi-homed support by equipping the MR with

multiple network interfaces subscribed to different wireless access networks, which

will provide us with a test-bed that allows us to perform live trials on the various

traffic engineering solutions proposed in this dissertation. The simulation codes used
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in our research were specifically written with this in mind, where its strict object-

oriented design makes it highly portable to other software modules. By writing a

simple customized interface between our simulation code and the system kernel in

the MR, the prototype can re-use our simulation code to exhibit traffic engineering

control over real user data traffic.

Apart from using it solely as a test-bed, the MR prototype will also provide

researchers with the opportunity to collect extensive measurements on various im-

portant data such as link performance traces, user data traces, and MR performance

metrics for future research and analysis. By deploying a fully functional test-bed on

a real PTV, we can conduct extensive trials to collect traces of the users’ data traffic

patterns and see whether it differs to the data traffic traces collected in other types of

network environments; e.g. static hotspots, corporate networks, home networks etc.

We expect that the collected data traffic trace may contain notable differences from

the other traces due to the unique user dynamics and usage behavior introduced in

the new mobile network connection paradigm. Furthermore, the MR prototype allows

us to collect traces of the link performance behavior over the course of each trip. If

the measurements can be collected over a relatively long period of time, researchers

may be able to use data mining techniques to derive patterns among the collected

data, which will be useful for the future design of link prediction algorithms.
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Appendix A

NS2 simulation details

A.1 Introduction

In this appendix, we will provide the implementation details of the NS2 simulations

used in this thesis. The NS2 simulator is a discrete event simulator which is widely

used by the research community to evaluate network performances. The NS2 sim-

ulations used in the thesis were all performed in version 2.27, which was the latest

release at the time of our implementation.

This appendix is not designed to be an introductory tutorial on the NS2, but

instead the aim is to highlight the implementation issues for readers who are interested

in performing similar simulations for the NEMO multi-homed network model. For a

complete description of the NS2 simulator software, please refer to the official NS2

manual [74].

To simulate the performance of the data distribution algorithms for the NEMO

multi-homed network model, we created a NS2 simulation topology as shown in Figure

A.1. In this simulation architecture, the on-board users and the MR represent the

mobile hotspot. The MR is connected to the Internet via the multiple wireless access

links, which are represented by the dotted lines between the MR and the various BSs.
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Figure A.1: The general NS2 simulation architecture for the mobile hotspot model

The link dynamics are simulated by varying the link bandwidths and propagation

delays during the simulation, and hence we did not implement any wireless physical

layer models in the access links. The base-stations, MRHA, and the CNs are all

assumed to be located in the Internet and hence they are all connected together via

fixed high speed and low delay links. For simplicity, we did not introduce any other

external data traffic in any of the links in the simulation model.

We will now discuss the implementation details of the data distribution module,

which can be implemented in the MR and MRHA to control the on-board users uplink

and downlink data traffic respectively.

A.1.1 Classifier class

To exhibit data routing control in the MR or MRHA, we first need to understand how

the packet forwarding works in NS2. Figure A.2 illustrates the data forwarding model

in a standard NS2 node. The NS2 node is basically made up of several classifiers,

where the role of the classifier is to make a decision on how it should handle each
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packet. When a packet arrives at the node, the packets are first passed to the ad-

dress classifier class, which determines where to forward this packet to, based on the

destination address of the packet. If the destination address of the packet is directed

at the node itself, it will forward the packet to the port classifier, which determines

which agent to pass the packet to. In NS2, the agents are the communication end-

points where network layer packets are constructed or consumed (e.g. TCP sender

and receiver). The agents are identified by the port numbers in a flow. If the packets

are destined for other nodes in the networ, it will need to determine which link to

forward the packets to. The address classifier does this by looking at its routing ta-

ble, which is pre-computed at the start of the simulation. The routing table of each

node will contain routing entries for every other node in the network, since there is

no notion of subnet addressing in the NS2 standard addressing scheme. We did not

implement any routing protocols at the nodes, and hence the routing table remained

static throughout the simulation.

In the simulation model, we can see that there are multiple paths for the MR and
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Slot ID Object
Slot 0 Port Classifier
Slot 1 Connector (link 1)
Slot 2 Connector (link 2)
Slot 3 Multi-path Classifier 1
Slot 4 Multi-path Classifier 2

Table A.1: Sample slot table mappings for a NS2 node

MRHA to reach each other. For the data packets that are destined for the end-to-end

users, the MR or MRHA can forward the packets to either one of the base-stations.

The standard NS2 implementation provides limited support for this kind of multi-path

routing, by computing and storing the multiple paths that can be used to reach the

eligible nodes in the routing table. For nodes that can be reached by multiple paths,

the routing table entry for these nodes will point to their own copy of a multi-path

classifier instead of a link object. The multi-path classifier is responsible for storing

the multiple paths (link objects) that can be used reach to that particular destination.

Figure A.2 illustrates the standard NS2 multi-path classifier model.

In the NEMO multi-homed network model, the MR and MRHA are assumed to

have the flexibility to switch the users’ data traffic over any of the access links without

breaking end-to-end connection semantics. To exhibit control over the selection of

the multiple links that are attached to the MR and MRHA, we initially wanted to

replace the multi-path classifier with our own multi-path classifier. But there were

two reasons why we couldn’t do this:

• Multiple copies of the multi-path classifier objects - for each destination node

where multiple paths can be used, there is an independent multi-path classifier

associated in each corresponding slot. For the simulations where there are
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multiple end-users in the model, there will be multiple copies of the multi-path

classifier in the MR or MRHA, which means that the data distribution control

cannot be centralized. The main drawback with a non-centralized approach is

that common information cannot be easily shared between the multiple multi-

path classifiers.

• No direct reference to the multi-path classifier objects - if we were to exhibit

a centralized control over the multiple multi-path classifier objects, it will be

logical to do this in the address classifier. But the problem with this approach is

that there is no standard function to get hold of each of the multi-path classifier

in the address classifier.

Consequently, we had to do ignore the standard NS2 multi-path routing support

and we replaced the standard address classifier with our own version of the address

classifier; which we call the mobile router classifier (MR-classifier). The MR-classifier

can be used in both the MR and MRHA nodes for be used respectively for uplink

and downlink traffic control.

A.1.2 MR-classifier

The MR-classifier replaces the standard address classifier in the MR and MRHA

node. As there are 3 possible data switching schemes for the NEMO multi-homed

network model, we implemented abstract classes for the host-based; flow-based; and

packet-based MR-classifiers which allow users to implement their own data distribu-

tion algorithms in any of these switching schemes. The design of the MR-classifier is

shown in Figure A.3.

Every time a packet comes into the MR-classifier, the classify() function is called
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Figure A.3: NS2 mobile router classifier model

to determine which slot number to forward the packet over to. The slot numbers

are basically numerical identifiers to the various objects (i.e. link, port classifier)

that are mapped to each destination in the routing table. The main problem with

the new address classifier implementation is that it does not have any idea on the

simulation topology, which includes the network addresses of the other nodes in the

model. As we disabled the built-in multi-path routing support, the routing table of the

MR-classifier only contains a single routing entry (slot number) for each destination

address and hence there is no way for the MR-classifier to know if there are multiple

paths to a particular destination node when the classify() function is called. To get

over this limitation, we had to design the classifier in such a way that allows the

Tool Command Language (TCL) simulation scripts to explicitly specify the following

information before the start of the simulation:
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• the addresses of the end nodes - Since multi-path support is disabled in the

simulation, we need to explicitly tell the MR-classifier the address of the corre-

sponding end nodes which needs explicit traffic engineering control (i.e. deter-

mining which access link to forward the packet to). For the MR-classifier in the

MR, this means the simulation scripts needs to specify the address of the CNs

while for the MR-classifier in the MRHA, the simulation scripts needs to specify

the addresses of the on-board users. This allows the MR-classifiers to trigger

its data distribution control for packets destined to these special addresses. For

the routing of packets to the other nodes, the MR-classifier will simply perform

a standard routing lookup and return the slot numbers in the pre-computed

static routing table.

• the address of the base-stations - this allows the MR-classifier to determine

the slot numbers of the link objects for each of its multiple access links. This

information allows the MR-classifier to know which link options it has when a

packet is destined for the corresponding end users.

With the above information specified at the start of the simulation, the MR-

classifier will first look at the destination address of all incoming packets to see if

it matches the address of the (specified) end nodes. If the packet belongs to one of

the specified end nodes, the MR-classifier will make a call to MR-classify(), which

determines which access link the packet should be forwarded to. Once a packet is

forwarded to any one of the BS, the BS will be able to forward the packet to the

end hosts according to the routing paths that are pre-computed by the standard NS2

implementation.
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A.2 Conclusion

This section highlighted some of the important implementation issues in our modified

version of the NS2 simulator. It allows users to gain a better understanding on

the implementation challenges we have experienced, which hopefully makes it easier

for readers who wished to implement their own data distribution algorithms for the

NEMO multi-homed architecture.



Appendix B

CPLEX simulation details

B.1 Introduction

In this appendix, we provide the implementation details of the CPLEX simulations

that were used in the evaluation of the in-transit and pre-transit user-based traffic

engineering algorithms proposed in Chapter 6 of this thesis.

The CPLEX software package is a commercial mathematical optimizer devel-

oped by ILOG. It is designed to solve linear programming, quadratic programming,

quadratically constrained programming and mixed integer programming problems.

The solutions are computed using proprietary algorithms in the CPLEX library,

which are highly optimized for computation speed. Also, the CPLEX algorithms

have the ability to handle very large and complex optimization models. The commer-

cial package contains C++ and Java libraries that allow users to call the optimization

functions in their own programming code.

In the in-transit and pre-transit user-based traffic engineering solutions (Chapter

6), the algorithms require the extensive use of LIP computations. To simulate and

compare the performance of the proposed algorithms, we designed a C++ software

module which models the system state of the mobile hotspot in a way that allows
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Figure B.1: The MR-framework software model

the traffic engineering algorithms to be computed by the CPLEX optimizer. This is

called the MR-framework module, and the architecture of the MR-framework module

is shown in Figure B.1.

The MR-framework module is designed to simulate the mobile hotspot model,

which contains information that represents the state of the system. Information such

as the user requirements, the current network states (e.g. the link bandwidths), and

the charging models are stored in the framework, and we create the LIP model using

these information. The MR-framework module is dynamically linked to the CPLEX

version 9.1 C++ library, where the LIP model is built using the classes and functions

provided by the CPLEX C++ library. Once the model is built, the model is passed to

the CPLEX solver function for the computation of the model. Once the computation

is finished, the CPLEX library returns a solution object to the caller.

To conduct the simulations for the proposed user-based traffic engineering solu-

tions, we developed an external C++ module which is called the MR-simulator mod-

ule. The linkage between the MR-simulation module, the MR-framework module and

the CPLEX library is illustrated in Figure B.2.
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Figure B.2: The CPLEX simulation model

The MR-simulator class is responsible for conducting the various experiments of

the in-transit and pre-transit algorithms. Its main role is to control the input param-

eters of the various simulations scenarios, and conduct the experiments accordingly.

The MR-simulator builds objects of the MR-framework class, and calls the appro-

priate CPLEX solver solutions in the CPLEX optimizer. The in-transit user-based

scheme was simulated by making iterative calls to the CPLEX solver, and inputting

the system state information for each bandwidth variation point. In contrast, the

pre-transit user-based scheme was simulated by creating the system state model for

the entire trip and feeding it into the CPLEX solver where the computation is only

performed once. Once the computations are finished, the solutions are converted to

user switching tables for performance analysis. By feeding the computed user switch-

ing tables into the results analyzer, the results analyzer will compute the various

performance metrics for comparison. The results are stored in formatted text-based

data files, which can be used to plot graphs of various performance metrics.
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B.2 Summary

This appendix provided an overview on the implementation details of the CPLEX

simulation model that were used in the simulations of the proposed user-based traffic

engineering solutions. We provided a brief introduction on the CPLEX optimizer,

and discussed the implementation details of how the simulations were performed.

This appendix will be useful for readers who are interested in performing their own

user-based traffic engineering simulations for the mobile hotspot model.



Appendix C

GPRS measurements

C.1 Introduction

One critical issue in the mobile network architecture is the possibility of temporary

outages due to low quality of wireless links between MR and the base stations. There-

fore, the ability to predict link conditions before each trip, which becomes possible

when the route of the vehicle is known in advance (e.g. PTVs), can significantly

improve the performance of on-board moving networks. In this appendix, we show

some results on the impact of different factors on the signal strength of a GPRS link

in a metropolitan area. Our study suggests that location is a promising factor in

the context of link prediction for on-board mobile networks. We observe that signal

strength is strongly correlated with locations across different times of a day. Addi-

tionally, we find that, while the signal strength levels measured at low and medium

speeds are similar, there are larger variations and more frequent handoffs at a lower

speed. These insights may be useful for designing for link prediction algorithms in

the future.

One critical issue in such a mobile networking architecture is the possibility of

temporary outages due to low quality of wireless links between on-board routers and
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base stations. An outage can occur in a cellular network when the received signal

strength is below a certain threshold. For example, the threshold for a GSM 900

mobile phone is -104 dBm [75]. An outage disrupts existing connections and on-

going services, which is exacerbated even in an mobile multi-homed network because

a single link outage may impact a large number of existing connections.

Unlike most wireless end devices (such as mobile phones), whose mobility patterns

are in general unpredictable, the routes of PTVs are known in advance and repetitive.

One can take advantage of this fact to predict link conditions to a certain extent.

For example, the MR may record information such as signal strength and available

bandwidth on the wireless link, at different locations and times on its route. Analysis

of recorded information over time may reveal that the signal loss occurs with a high

probability at certain locations, times of day, or weather conditions. While a link

outage may not be preventable, predicting it in advance can nonetheless improve

the performance of on-board connections significantly [76]. For example, by sending

a signal about an imminent outage to existing connection endpoints, the MR can

prevent the chaotic and uncoordinated attempts by the individual connections to

resume their data flows after the outage occurs; which may be subject to contention,

excessively long timeouts, and other undesirable features.

Motivated by the above observations, we set out to explore the significance of the

various factors that may be affecting the quality of the wireless signal. Our ultimate

goal is to gain the insight necessary to properly design the recording and mining

of wireless signal strength and bandwidth availability in the MR. Note that, while

the received signal strength is obviously affected by various physical factors such

as distance, noise, multi-path, etc, it is non-trivial to measure and hard to utilize
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these factors in the context of outage prediction in practice. In this work, we focus on

understanding which of the potential environmental factors have a dominating impact

on the received signal strength and can be utilized in the outage prediction process.

The environmental factors include location, weather, time of day, people, vehicle

velocity, and transportation mode, etc. Compared to the above mentioned physical

factors, measurements of these environmental factors are easier to be obtained and

utilized for outage prediction.

To answer this question, we have studied cellular network signal strength quality

under a variety of conditions in a metropolitan area. Specifically, we have conducted

wide-area measurements by recording the GPRS signal strength in different locations

and under a variety of conditions in Sydney, Australia, focusing in particular on

several public transport routes. We find that, among the factors studied, location

is clearly the most dominating factor affecting the signal quality, with the overall

impact of all other factors being much less significant. Therefore, even a simple outage

prediction approach, taking into account only the location of the vehicle is likely to

bring about a performance improvement in practice. We note that, undoubtedly,

similar measurements have also been performed by the cellular service providers and

some consulting companies. However, to our best knowledge, their results are not

publicly available.

The rest of this appendix is organized as follows. In Section C.2 we present

some related work. Section C.3 describes our data collection process, and our results

are discussed in Section C.4. Finally, conclusions and future work are presented in

Section C.5.
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C.2 Related work

Our work builds on prior work in on-board communication, outage prediction, signal

strength measurements and GPRS network measurements. The idea that the advance

knowledge and repetitiveness of public transport routes can be used to predict wireless

signal outages was suggested by Baig et al. [76], who proposed to employ the Freeze-

TCP [77] extension on the MR and analyzed the TCP performance benefits gained

by outage prediction. They assumed outages to be predicted independently of each

other with a given probability, and showed that the improvement in TCP throughput

is super-linear in the prediction probability, especially when the TCP connections

used large window sizes. However, they did not consider the mechanisms required to

implement the prediction in practice.

Empirical measurements of the wireless signal strength and of its dependence on

various factors have been done by cellular service providers and consulting companies.

For example, Omnitele [78] conducted experiments to measure call success rate, signal

strength and throughput along roads, train routes and in urban and rural areas. How-

ever, instead of characterizing network behaviors, their objective was to utilize the

collected measurements to optimize operators’ network performance for better cus-

tomer service and hardware utilization. However, their data is not publicly available.

Wagen [79] conducted a series of experiments in small (62 meters by 65 meters) urban

areas to measure signal loss in both line-of-sight and non-line-of-sight conditions. He

developed an empirical model to characterize the relationship between signal strength

and distance. Lastly, Chen and Siew [80] have conducted indoor experiments to mea-

sure the performance of a wireless LAN. Their focus was to investigate how the packet

and bit level error characteristics are affected by different environmental factors such
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as humidity, microwave interference, wall obstacle and distance.

Several previous studies [81–83] have investigated TCP performance on GPRS

links by conducting stationary experiments over production networks. They found

that the long queuing delay of GPRS links has a major negative effect on TCP per-

formance. They showed that GPRS links are currently plagued with several problems

such as high and variable round trip time, bursty packet loss and frequent link out-

ages.

Unlike prior work, the focus of our work is to investigate the impact of different

environmental factors on the received signal strength in an operational GPRS network

and search for the dominant factors to be used for outage prediction in a known route,

as is the case, e.g., for a public transport or a regularly commuting private vehicle.

C.3 Data collection

For data collection, an undergraduate honors thesis student named Irene Chan trav-

eled around the Sydney metropolitan area and conducted measurements of GPRS

signal strength on public transportation systems. We recorded the signal strength

of Vodafone’s 1 GPRS network at different locations and under different conditions

such as moving speeds, times of a day, levels of humidity, etc. Our measurements

record the quality of signal of wireless links between the receiver and base stations,

the identity of base stations that our mobile user connected to, and locations and

timestamps when measurements were taken. We used a Garmin eTrex Global Po-

sitioning System (GPS) receiver to record locations and times when measurements

were taken. Due to the line-of-sight limitation of GPS, for certain locations (e.g.

1Vodafone is one of the largest national GPRS operators in Australia.
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Figure C.1: Bus and train routes where most measurements were taken. The green
dotted line (on the left) denotes the Chatswood-Bondi bus route. The blue line (on
the right) indicates the St. Leonards-Central train route.
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inside a tunnel) we manually recorded the time and estimated the location based on

surrounding landmarks.

The data was collected during a six-month period between October 2003 and

April 2004. Our traces were collected on different transportation means including

train, bus and car. Some experiments were performed in a car driven along a bus

route to study the effect of different speeds on signal strength reception. We also

performed the experiments at some chosen locations in the Sydney urban area for

stationary measurements. The bus and train routes where measurements were taken,

run across an area from north to south Sydney. For the train experiments, the route

from St. Leonards to Central station is chosen. For the bus experiments, the route

200 traveling between Bondi and Chatswood is chosen. Figure C.3 shows the bus and

train routes where measurements were taken. We measured the quality of signal at

different locations and under different conditions such as different moving speed and

different times of a day, etc. Each experiment was repeated a number of times to

ensure that our results are consistent.

C.4 Results

We investigated the effects of a range of different environmental factors on the mea-

sured signal strength. In this appendix, we present our preliminary results for the

following factors: location, moving speed, obstruction, humidity and people. Among

those factors we studied, we find that location has the most significant effect on the

measured signal strength.
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Figure C.2: Signal strength measured at different locations across different times.

C.4.1 Location

We find that signal strength is strongly correlated with locations across different

times of day. As shown in Figure C.2, each line indicates a different experiment that

was performed at different times on the same train route. We find that the quality

of signal varies significantly among different locations, but remains similar across

different times of day for the same location. The above observation suggests the

possibility of using correlations between location and signal strength as a predictor

for outage prediction.

Furthermore, we find that there is some correlation between the location and the

base station that our mobile user connected to. Figure C.3 shows a sequence of

switching between different base stations when the mobile user moved along a train

route. Although the switching sequences are not identical between experiments, they

indicate a certain degree of predictability. Such an observation seems to suggest the
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Figure C.3: Switching sequence to different base stations at different times.
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Figure C.5: The effect of humidity on the measured signal strength.
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Figure C.6: The effect of people on the measured signal strength.
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feasibility of deploying some resource reservation schemes to improve the performance

of on-board networks. For example, one could employ some pre-association techniques

to reduce the latency of handoff for base stations that are in different IP subnets.

C.4.2 Other factors

In addition to location, we also investigate a number of other environmental factors

(such as moving speed, humidity, people, transportation mode, etc.) but find that

they do not have significant effects on the received signal strength. Consequently,

we only present some preliminary results for the following factors: speed, humidity,

people and tunnel.

Speed

To investigate effects of speed on signal strength reception, we measured signal

strength when driving at different speeds, namely 10km/hr and 50km/hr, on the

same route. We find that there is no significant difference in the received signal

strength level, as shown in Figure C.4. However, there are more variations when

traveling at a lower speed. Our hypothesis is that, when moving at a lower speed,

the receiver would bypass each location more slowly so that the location factor has

a less dominant effect on the signal strength compared to when driving at a higher

speed. In other words, when a user travels faster, other environmental factors might

have less time to change and less impact on the received signal. As a result, the

user experiences a smaller variation in the received signal strength because only the

location affects the signal and other factors remains more or less constant during the

travel time.

In addition, we observed that there were more handoffs when measurements were
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taken at a lower speed. The handoffs are shown as “X” and “O” for different speeds

in Figure C.4 (which might be explained by the larger variations in signal strength

when driving at a lower speed). The above observations might be useful for improving

the realism of wireless simulations. For example, a business merger might result in

some of the base stations being in different IP subnets even though they are owned by

the same operator [84].In that case, one might want to take the frequency of handoffs

into consideration when simulating the traveling between different base stations for

some delay-sensitive applications, such as VoIP or streaming traffic.

Humidity

Precipitation in the atmosphere can cause signals to be absorbed and weakened,

also known as rain attenuation. We performed six experiments in both dry and rainy

conditions. The rainfall rate for experiments performed in rainy days is 2.0 millimeters

per hour. As shown in Figure C.5, we find that the average signal strengths in both

cases are similar when measured at the same locations. Rain attenuation typically

has a stronger effect on wireless networks that operate in higher frequency bands

(such as 10GHz). However, GPRS operates in a lower frequency band (900MHz and

1.8GHz in Australia) and is not affected much by rain attenuation. Note that some

base stations utilize microwave links to connect to the mobile service switching center

(MSC). Microwave links are more susceptible to rain attenuation since they operate

in a higher frequency, although our experiments do not capture the rain effect on such

links.
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People

To understand the effect of people on the received signal strength, we performed

experiments in a crowded spot at our university. For comparison, we repeated the

same experiments during Easter break when most students have left for vacation.

As shown in Figure C.6, we find that the average signal strength in both cases are

similar. However, we find that the standard deviation of signal strength measured in

a crowded environment is two orders of magnitude higher than the un-crowded case.

This is not surprising though since moving people might obstruct (or absorb) signal

traveling in between and cause larger variations of the received signal.

Tunnel

We also measured the received signal strength when traveling on a train inside tunnels.

We find that the existence of tunnel does not necessarily lead to continuous outages.

As shown in Figure C.7 and Figure C.8, outages only occurred in some parts of the

tunnel. The numbers on top of the graphs indicate the time when measurements

were taken. The marks above the numbers indicate where a cell switching occurred.

This observation might be due to the deployment of micro-cells. In practice, cellular

network providers typically deploy micro-cells around platforms to provide temporary

coverage in the tunnels. As shown in Figure C.7 and Figure C.8, the received signal

strength significantly increased when the train was near the platform inside a tunnel.

Due to administrative issues, train tunnels typically do not have coverage from

any operator because they are public assets. In addition, in practice it is difficult to

deploy repeaters or amplifiers in tunnels to improve the signal coverage.
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C.5 Summary

In an on-board communication network, it is important to understand when tem-

porary outages occur due to signal degradation when users travel between different

environments. In particular, the ability to predict link outages before they occur;

which may be possible when the route is known is advance and was traveled before

(e.g. in the case of a public transport or regularly commuting private vehicle); can

significantly improve the service quality of on-board network connections.

In this appendix, we show some measurement results on the impact of different

factors on the received signal strength in a metropolitan area. Our preliminary mea-

surement results suggest that location is a dominant factor in the context of outage

prediction for on-board mobile networks. Additionally, we find that, while signal

strength measured at low and medium speeds are similar, there are larger variations

and more frequent handoffs at a lower speed. These insights provide an important

first step on the way to designing a practical outage prediction algorithm in a MR.

Because of the hardware limitation, in our preliminary study we recorded only

the received signal strength. Information on Signal-to-Noise Ratio (SNR) might be

useful for evaluating the actual perceived link quality to applications, and we plan

to collect SNR data as a future work. While we are not aware of any existing GPRS

card that can measure SNR, some cards provide a reading of reception quality which

uses SNR as one of its inputs.
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Figure C.7: Effect of tunnels on the measured signal strength: outage occurs only in
some parts of the tunnel.

Figure C.8: The effect of people on the measured signal strength.



Bibliography

[1] icomera, “http://www.icomera.com/.”

[2] PointShot Wireless, “http://www.pointshotwireless.com/.”

[3] Inmotion Technology, “http://www.inmotiontechnology.com/.”

[4] Connexion, “http://www.connexionbyboeing.com/.”

[5] Cisco Mobile Router, “http://www.cisco.com/en/us/products/hw/routers

/ps272/prod presentation list.html.”

[6] IETF NEMO Working Group, “http://www.ietf.org/html.charters/nemo-

charter.html.”

[7] European Commission IST OverDRiVE, “http://www.ist-overdrive.org.”

[8] Nautilus 6 working group, “http://www.nautilus6.org/.”

[9] Korean NEMO, “http://mmlab.snu.ac.kr//research/project/2003/nemo.”

[10] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, “Network mobility

(NEMO) basic support protocol,” Jan. 2005, IETF RFC3963.

[11] P. Smith, “BGP multihoming techniques,” http://www.nanog.org/mtg-

0110/smith.html, 2001.

178



179

[12] T. Bates and Y. Rekhter, “Scalable support for multi-homed multi-provider con-

nectivity,” Jan. 2004, IETF RFC2260.

[13] V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic load balancing on web-

server systems.” IEEE Internet Computing, vol. 3, no. 3, pp. 28–39, 1999.

[14] K. Egevang and P. Francis, “The IP Network Address Translator (NAT),” May

1994, IETF RFC1631.

[15] S. Sinha, S. Kandula, and D. Katabi, “Harnessing TCPs Burstiness using Flowlet

Switching,” in 3rd ACM SIGCOMM Workshop on Hot Topics in Networks (Hot-

Nets), San Diego, CA, November 2004.

[16] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope: re-

sponsive yet stable traffic engineering,” SIGCOMM Comput. Commun. Rev.,

vol. 35, no. 4, pp. 253–264, 2005.

[17] S. Rost and H. Balakrishnan, “Rate-Aware Splitting of Aggregate Traffic,” in

MIT Technical Report, 2003.

[18] N. Yamai, K. Okayama, H. Shimamoto, and T. Okamoto, “A Dynamic Traffic

Sharing with Minimal Administration on Multihomed Networks,” in Proceedings

of IEEE International Conference on Communications (ICC), vol. 5, 2001, pp.

1506–1510.

[19] D. K. Goldenberg, L. Qiuy, H. Xie, Y. R. Yang, and Y. Zhang, “Optimizing

cost and performance for multihoming,” in SIGCOMM ’04: Proceedings of the

2004 conference on Applications, technologies, architectures, and protocols for

computer communications. New York, NY, USA: ACM Press, 2004, pp. 79–92.



180

[20] K.-H. Kim and K. G. Shin, “Improving tcp performance over wireless networks

with collaborative multi-homed mobile hosts,” in MobiSys ’05: Proceedings of

the 3rd international conference on Mobile systems, applications, and services.

New York, NY, USA: ACM Press, 2005, pp. 107–120.

[21] A. Qureshi and J. Guttag, “Horde: separating network striping policy from

mechanism,” in MobiSys ’05: Proceedings of the 3rd international conference on

Mobile systems, applications, and services. New York, NY, USA: ACM Press,

2005, pp. 121–134.

[22] D. S. Phatak and T. Goff, “A Novel Mechanism for Data Streaming Across Multi-

ple IP Links for Improving Throughput and Reliability in Mobile Environments.”

in Proceedings of IEEE Infocom, vol. 2, June 2002, pp. 773–781.

[23] H.-Y. Hsieh, K.-H. Kim, Y. Zhu, and R. Sivakumar, “A Receiver-Centric Trans-

port Protocol for Mobile Hosts with Heterogeneous Wireless Interfaces,” in Pro-

ceedings of ACM MOBICOM, 2003.

[24] Nokia WiFi Mobile Phones, “http://www.nokia.com/.”

[25] J. Ala-Laurila, J. Mikkonen, and J. Rinnemaa, “Wireless lan access network

architecture for mobile operator,” IEEE Communications Magazine, pp. 82–89,

November 2001.

[26] H. Haverinen, J. Mikkonen, and T. Takamaki, “Cellular access control and charg-

ing for mobile operator wireless local area networks,” IEEE Wireless Communi-

cations Magazine, pp. 52–60, December 2002.



181

[27] A. Salkintzis, C. Fors, and R. Pazhyannur, “Wlan-gprs integration for next-

generation mobile data networks,” IEEE Wireless Communications Magazine,

pp. 112–124, October 2002.

[28] P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt, and S. Banerjee, “Mar:

a commuter router infrastructure for the mobile internet,” in MobiSys ’04: Pro-

ceedings of the 2nd international conference on Mobile systems, applications, and

services. New York, NY, USA: ACM Press, 2004, pp. 217–230.

[29] E. Paik and Y. Choi, “Seamless Mobility Support for Mobile Networks on Ve-

hicles across Heterogeneous Wireless Access Networks,” in Proceedings of IEEE

VTC-Spring, vol. 4, April 2003, pp. 2437–2441.

[30] J. Chesterfield, R. Chakravorty, I. Pratt, S. Banerjee, and P. Rodriguez, “Ex-

ploiting Diversity to Enhance Multimedia Streaming Over Cellular Links,” in

Proceedings of IEEE Infocom, vol. 3, 2005, pp. 2020 – 2031.

[31] C.-W. Ng and T. Ernst, “Multiple Access Interfaces for Mobile Nodes and Net-

works,” in Proceedings of International Conference On Networks (ICON), vol. 2,

2004, pp. 774 – 779.

[32] E. Paik, H. Cho, T. Ernst, and Y. Choi, “Load Sharing and Session Preserva-

tion with Multiple Routers for Large Scale Network Mobility,” in Proceedings of

International Conference on Advanced Information Networking and Application

(AINA), vol. 1, 2004, pp. 393–398.

[33] M. Tsukada, T. Ernst, R. Wakikawa, and K. Mitsuya, “Dynamic Management

of Multiple Mobile Routers,” in Proceedings of IEEE International Malaysia



182

Conference on Communications and IEEE International Conference in Networks

(MICC-ICON), vol. 2, 2005, pp. 1108 – 1113.

[34] L. Suciu, J.-M. Bonnin, K. Guillouard, and T. Ernst, “Multiple Network In-

terfaces Management for Mobile Routers,” in International Conference on ITS

Telecommunications (ITST), 2005.

[35] H. Lach, C. Janneteau, and A. Petrescu, “Network Mobility in Beyond-3G Sys-

tems,” IEEE Communications Magazine, pp. 52–57, July 2003.

[36] Y.-B. Lin and J. Y.-B. Lin, Wireless and Mobile Network Architectures. New

York, NY, USA: John Wiley & Sons, Inc., 2000.

[37] IETF MONAMI6 Working Group, “http://www.ietf.org/html.charters/monami6-

charter.html.”

[38] L. Qiu, P. Bahl, and A. Adya, “The Effects of First-Hop Wireless Bandwidth

Allocation on End-to-End Network Performance,” in Proceedings of ACM NOSS-

DAV, 2002.

[39] I. Chan, A. Chung, K. Lan, L. Libman, and M. Hassan, “Understanding the

effect of environmental factors on link quality for on-board communications,” in

Proceedings of IEEE VTC-Fall, vol. 3, 2005, pp. 1877 – 1881.

[40] F. Guo, J. Chen, W. Li, and T. Chiueh, “Experiences in Building a Mulithoming

Load Balancing System,” in Proceedings of IEEE Infocom, vol. 2, 2004, pp. 1241

– 1251.



183

[41] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted round-robin cell

multiplexing in a general-purpose atm switch chip.” IEEE Journal on Selected

Areas in Communications, vol. 9, no. 8, pp. 1265–1279, 1991.

[42] A. Francini, F. M. Chiussi, R. T. Clancy, K. D. Drucker, and N. E. Idirene,

“Enhanced weighted round robin schedulers for accurate bandwidth distribution

in packet networks,” Comput. Networks, vol. 37, no. 5, pp. 561–578, 2001.

[43] H. M. Chaskar and U. Madhow, “Fair scheduling with tunable latency: a round-

robin approach,” IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 592–601, 2003.

[44] D.-C. Li, C. Wu, and F. M. Chang, “Determination of the parameters in the

dynamic weighted round-robin method for network load balancing,” Comput.

Oper. Res., vol. 32, no. 8, pp. 2129–2145, 2005.

[45] K. Thompson, G. J. Miller, and R. Wilder, “Wide-area Internet traffic patterns

and characteristics,” IEEE Network, vol. 11, no. 6, pp. 10–23, Nov./Dec. 1997.

[46] I. Matta and L. Guo, “Differentiated predictive fair service for tcp flows.” in

ICNP: Proceedings of the Eighth International Conference on Network Protocols.

Osaka, Japan: IEEE Computer Society, 2000, pp. 49–58.

[47] L. Guo and I. Matta, “The war between mice and elephants,” in ICNP: Proceed-

ings of the Ninth International Conference on Network Protocols. Washington,

DC, USA: IEEE Computer Society, 2001, p. 180.

[48] X. G. Meng, S. H. Y. Wong, Y. Yuan, and S. Lu, “Characterizing flows in large

wireless data networks,” in Proceedings of ACM MOBICOM, 2004, pp. 174–186.



184

[49] T. Henderson, E. Sahouria, S. McCanne, and R. Katz, “On Improving the Fair-

ness of TCP Congestion Avoidance,” in Proceedings of IEEE Globecom, 1998.

[50] A. B. Downey, “Using Pathchar to estimate internet link characteristics,” in

Proceedings of ACM SIGCOMM, 1999, pp. 222–223.

[51] K. Lai and M. Baker, “Measuring link bandwidths using a deterministic model

of packet delay,” in Proceedings of ACM SIGCOMM, Aug. 2000, pp. 283–294.

[52] K. Lai and M. Baker, “Nettimer: A tool for measuring bottleneck link band-

width,” in Proceedings of the USENIX Symposium on Internet Technologies and

Systems, Mar. 2001.

[53] UCB/LBNL/VINT Network Simulator-ns (Version 2),

“http://www.isi.edu/nsnam/ns/.”

[54] C. Courcoubetis, V. A. Siris, and G. D. Stamoulis, “Network control and usage-

based charging: is charging for volume adequate?” in ICE ’98: Proceedings of

the first international conference on Information and computation economies.

New York, NY, USA: ACM Press, 1998, pp. 77–82.

[55] N. Yamai, K. Okayama, H. Shimamoto, and T. Okamoto, “TCP performance

over GPRS,” in Proceedings of IEEE Wireless Communication and Networking

Conference (WCNC), vol. 3, 1999, pp. 1248–1252.

[56] F. Eyermann, P. Racz, B. Stiller, C. Schaefer, and T. Walter, “Generic account-

ing configuration management for heterogeneous mobile networks,” in WMASH



185

’05: Proceedings of the 3rd ACM international workshop on Wireless mobile ap-

plications and services on WLAN hotspots. New York, NY, USA: ACM Press,

2005, pp. 46–55.

[57] Australian Broadband Choice, “http://bc.whirlpool.net.au/.”

[58] H.-Y. Wei and Y.-D. J. Lin, “A survey and measurement-based comparison of

bandwidth management techniques.” IEEE Communications Surveys and Tuto-

rials, vol. 5, no. 2, 2003.

[59] H.-Y. Wei, S.-C. Tsao, and Y.-D. J. Lin, “Assessing and improving tcp rate

shaping over edge gateways.” IEEE Trans. Computers, vol. 53, no. 3, pp. 259–

275, 2004.

[60] M. Liebsch, H. Chaskar, D. Funato, and E. Shim, “Candidate Access Router

Discovery,” draft-ietf-seamoby-card-protocol-07.txt, IETF working draft.

[61] A. Talukdar, B. Badrinath, and A. Acharya, “MRSVP: A Resource Reserva-

tion Protocol for an Integrated Services Network with Mobile Hosts,” Wireless

Networks, vol. 7(1), pp. 5–19, 2001.

[62] C. Tseng, G. Lee, R. Liu, and T. Wang, “HMRSVP:A Hierarchical Mobile RSVP

Protocol,” Wireless Networks, vol. 9(2), pp. 95–102, March 2003.

[63] W. Chen and L. Huang, “RSVP mobility support: A signaling protocol for inte-

grated services Internet with mobile hosts,” in Proceedings of IEEE INFOCOM,

vol. 3, 2000, pp. 1280–1292.

[64] ILOG CPLEX, “http://www.cplex.com/.”



186

[65] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan, “Two-way tcp traffic over

rate controlled channels: effects and analysis,” IEEE/ACM Trans. Netw., vol. 6,

no. 6, pp. 729–743, 1998.

[66] H. Balakrishnan, “Challenges to reliable data transport over heterogeneous wire-

less networks,” Ph.D. dissertation, 1998, chair-Randy H. Katz.

[67] H. Balakrishnan, R. H. Katz, and V. N. Padmanbhan, “The effects of asymmetry

on tcp performance,” Mob. Netw. Appl., vol. 4, no. 3, pp. 219–241, 1999.

[68] N. Joshi, S. R. Kadaba, S. Patel, and G. S. Sundaram, “Downlink scheduling in

cdma data networks,” in MobiCom ’00: Proceedings of the 6th annual interna-

tional conference on Mobile computing and networking. New York, NY, USA:

ACM Press, 2000, pp. 179–190.

[69] B. Mah, “An empirical model of HTTP network traffic,” Kobe, Japan, Apr.

1997, pp. 592–600.

[70] A. Feldmann and J. Rexford, “Efficient policies for carrying web traffic over

flow-switched networks,” IEEE/ACM Trans. Netw., vol. 6, no. 6, pp. 673–685,

1998.

[71] S. Floyd and V. Paxson, “Difficulties in simulating the Internet,” vol. 9, no. 4,

pp. 392–403, Feb. 2001.

[72] UNSW OCEAN project, “http://ocean.cse.unsw.edu.au.”

[73] K. Lan, H. Petander, E. Perrera, L. Libman, C. Dwertman, and M. Hassan,

“MOBNET: The Design and Implementation of a Network Mobility Testbed for



187

NEMO protocol,” in Proceedings of IEEE Workshop on Local and Metropolitan

Area Networks, 2005, pp. 1–6.

[74] The ns Manual, “http://www.isi.edu/nsnam/ns/doc/.”

[75] 3rd Generation Partnership Project, “Technical Specification Group

GSM/EDGE: Radio transmission and reception,” 3GPP TS 45.005, 2004.

[76] A. Baig, M. Hassan, and L. Libman, “Prediction-based recovery from link out-

ages in on-board mobile communication networks,” in Proceedings of IEEE

Globecom, Dallas, TX, Nov. 2004.

[77] T. Goff, J. Moronski, D. Phatak, and V. Gupta, “Freeze-TCP: A true end-to-

end enhancement mechanism for mobile environments,” in Proceedings of IEEE

Infocom, Tel-Aviv, Israel, Mar. 2000.

[78] Omnitele, “http://www.omnitele.fi/.”

[79] J.-F. Wagen, “Signal strength measurements at 881MHz for urban microcells in

downtown Tampa,” in Proceedings of IEEE Globecom, Phoenix, AZ, Dec. 1991.

[80] V. Chen and K. Siew, “Characterising errors in wireless LAN,” in Undergraduate

thesis, University of New South Wales, 2003.

[81] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield, and I. Pratt, “Per-

formance optimizations for wireless wide-area networks: Comparative study and

experimental evaluation,” in Proceedings of ACM Conference on Mobile Com-

puting and Networking (MobiCom), Philadelphia, PA, Sept. 2004.



188

[82] R. Chakravorty, J. Cartwright, and I. Pratt, “GPRSWeb: Optimizing the Web

for GPRS links,” in Proceedings of ACM Conference on Mobile Systems, Appli-

cations and Services (MobiSys), San Francisco, CA, May 2003.

[83] R. Chakravorty, J. Cartwright, and I. Pratt, “Practical experience with TCP

over GPRS,” in Proceedings of IEEE Globecom, Taipei, Taiwan, Nov. 2002.

[84] Z. M. Mao, J. Rexford, J. Wang, and R. Katz, “Towards an accurate AS-level

traceroute tool,” in Proceedings of ACM SIGCOMM, Karlsruhe, Germany, Aug.

2003.


	Title Page : TRAFFIC ENGINEERING FOR MULTI-HOMED MOBILE NETWORKS
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Abstract
	Acknowledgments
	Publications

	Chapter 1 - Introduction
	1.2 Motivation
	1.3 Contributions
	1.4 Thesis organization

	Chapter 2 - Background and literature review
	2.1 Introduction
	2.2 Static multi-homed networks
	2.3 Mobile multi-homed hosts
	2.4 Mobile multi-homed networks
	2.5 Summary

	Chapter 3 - NEMO multi-homed architecture
	3.1 Introduction
	3.2 NEMO multi-homed architecture
	3.3 Traffic engineering opportunities
	3.4 Issues and challenges
	3.5 Summary

	Chapter 4 - Packet-based traffic engineering
	4.1 Introduction
	4.2 Packet scheduling algorithms
	4.3 Simulation model
	4.4 Simulation results and analysis
	4.4 Simulation results and analysis
	4.5 Summary

	Chapter 5 - Maximum utility flow-based traffic engineering
	5.1 Introduction
	5.2 Problem formulation
	5.3 Flow scheduling without link switching
	5.4 Flow scheduling with link switching
	5.5 Predictive flow scheduling
	5.6 Simulation results and analysis
	5.7 Summary

	Chapter 6 - Profit optimization withuser-based traffic engineering
	6.1 Introduction
	6.2 Modeling hotspots in public transports
	6.3 Problem formulation
	6.4 Profit maximization schemes
	6.5 Simulation results and analysis
	6.6 Summary

	Chapter 7 - Inbound traffic control
	7.1 Introduction
	7.2 Message design
	7.3 Protocol operation
	7.4 Summary

	Chapter 8 - Conclusion and future work
	8.1 Conclusion
	8.2 Future work

	Appendix A - NS2 simulation details
	Appendix B - CPLEX simulation details

