

UNIK4230: Mobile Communications Spring Semester, 2014

Abul Kaosher

abul.kaosher@nsn.com

Mobile: 99 27 10 19

Tentative lecture schedule- UNIK4230

Spring Semester, 2014

- □ 30. Jan. 2014 Introduction
- □ 06. Feb. 2014 Network Architecture and Functionality
- □ 13. Feb. 2014 Propagation Characteristics of Wireless Channel-I
- □ 20. Feb. 2014 Winter break
- □ 27. Feb. 2014 Propagation Characteristics of Wireless Channel-II
- □ 06. Mar. 2014 Combating the effect of Fading in Mobile Systems
- □ 13. Mar. 2014 Cell and Cellular Traffic-I
- □ 20. Mar. 2014 Cell and Cellular Traffic-II
- □ 27. Mar. 2014 Multiple Access
- □ 03. April. 2014 Students Seminar on selected topics (All)
- □ 10. April. 2014 Mobile Broadband-I (Market Trends, Evolution, LTE)
- □ 17. April. 2014 Easter holiday
- □ 24. April. 2014 Mobile Broadband-II (LTE, SON, QoS, LTE-A)
- □ 08. May. 2014 Refarming and the challenges of Mobile Communications
- □ 15. May 2014 Small Cell and Heterogeneous Network (HetNet)
- □ 22. May 2014 Repetition and walk through on the course including Exam guidance
- □ 05, June 2014 Examination

Reference literature & examination

Lecture slides (will be uploaded before lectures)

Book

- P. M. Shankar, *'Introduction to Wireless Systems*``, 2002, Wiley.
 - Syllabus: chapter 2, 3, 4, 5 & 6
 - Do you need a copy of the chapters?
- Harri Holma and Antti Toskala , *"LTE for UMTS. Evolution to LTE-Advanced"*. 2nd Edition.

Articles

• Will be provided during lectures (when necessary)

Examination type:

Oral examination (based on lecture slides, chapters of the course book, articles provided during lectures); if book
chapter discusses more, contents in the lecture slide will limit the syllabus; however, lecture slides may contain more
topics than the book chapter. In that case, follow the extra topics only from the slides and the articles (if given).

Assignments

Presentation on selected topics

Introduction

Date: 30.01.2014

Importance of Telecommunication

Telekom er viktigere enn strøm og vei

Jeg ble veldig ovrasket da jeg forsto for første gang at telekommunikasjon er viktigere enn strøm og vei. Vi kan klare oss uten strøm og vei, men telekom kan vi ikke klare oss uten.

-Torstein Olsen, direktør i Post- og teletilsynet informerte

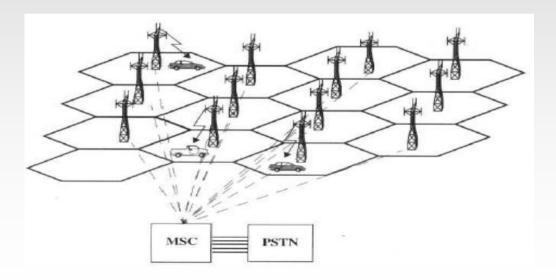
-Source: dn.no. Publisert: 13.01.2012 - 16:40 Oppdatert

Mobile Communications industry contributes to between 3.7 percent and 6.2 percent of GDP in the Telenor markets in Bangladesh, Pakistan, Thailand, Serbia and Ukraine.

An increase of 10 percent in mobile penetration will boost the annual economic growth rate of a developing country by 1.2 percent.

according to a study by Deloitte for Telenor in Bangladesh, Pakistan, Thailand, Serbia and Ukraine in 2008

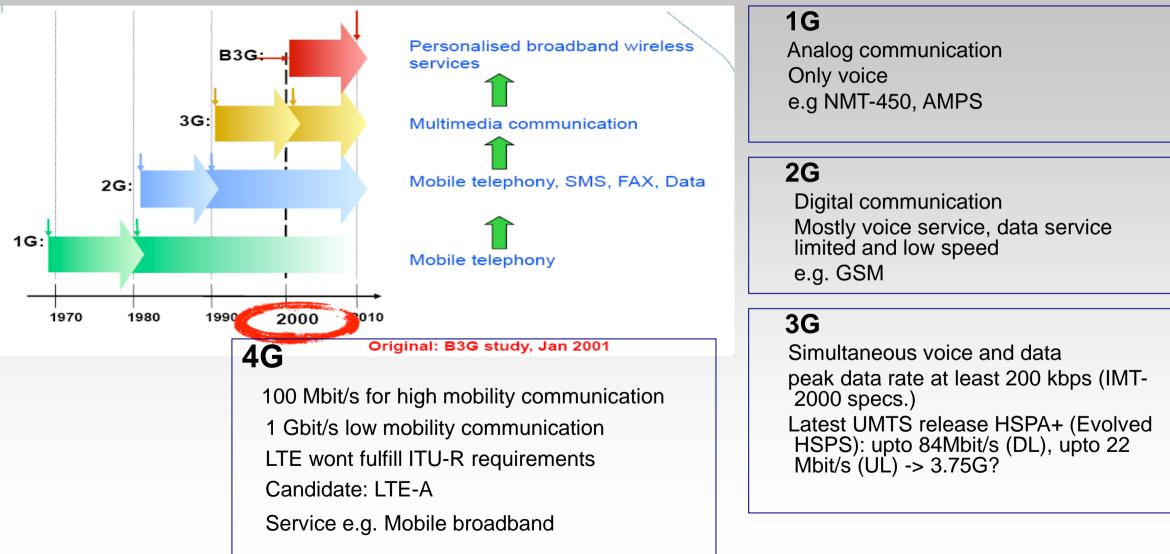
Agenda

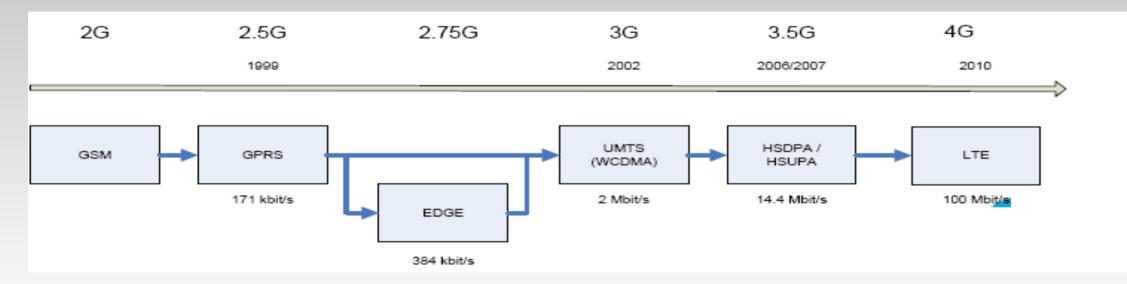

- What is mobile communication?
- History and trends
- Elements in mobile communication systems
- Basic functionality

Agenda

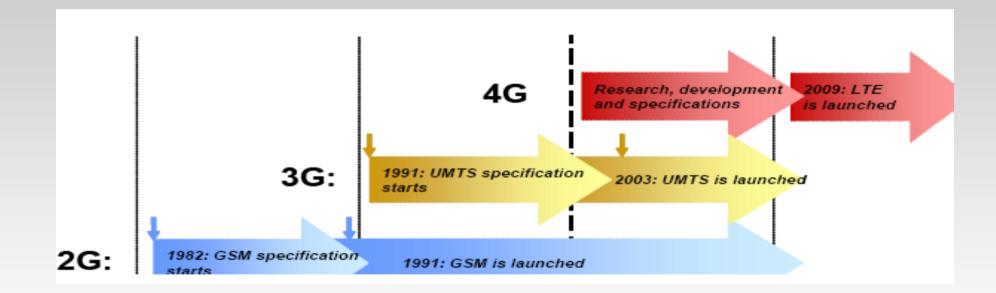
- What is mobile communication?
- History and trends
- Elements in mobile communication systems
- Basic functionality

What is mobile communication?


- Mobile communication system allows communication to and from handheld terminals during movement
- The system can handle a large number of users and provides almost a continuous coverage in a large geographical area
- Base station provides an area coverage
- The system has underlying infrastructure that provides communication to/from other type of communication networks


Mobile Communication

- Mobile Device is most personalized device
- Voice, SMS
- Data/Internet
- Emergency (police, ambulance, fire)
- Payment
- M2M communication
- Entertainment (music, gaming)
- Social Network and life


Generations in Mobile communication

Generations in Mobile Communications

Generations in Mobile Communications

Frequency band, technologies & operators

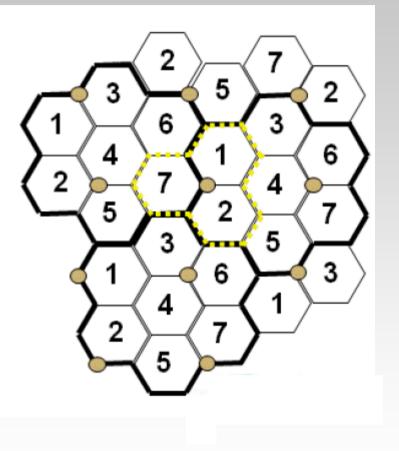
	Frekvens- bånd	Total mengde tilgjengelig	Bruk i Norge (forventet bruk)	Aktører i Norge
450 MHz	453-457 463-467	2*4 MHz	CDMA	"ICE"
DD (800 MHz)	790-820 832-862	2*30 MHz	(LTE)	(frekvenser ikke delt ut)
900 MHz	880-915 925-960	2*35 MHz	GSM	Netcom/ Telenor
1800 MHz	1710-1805 1805-1880	2*75 MHz	GSM	Netcom/ Telenor/ Network Norway
2100 MHz	1920-1980 2110-2190	2*60 MHz	UMTS	Netcom/ Telenor
2600 MHz	2500-2570 2620-2690	2*70 MHz	LTE	Netcom

Adobe Acrobat Document

Agenda

- What is mobile communication?
- History and trends
- Elements in mobile communication systems
- Basic functionality

History: Bell lab was testing mobile radio telephone in 1924



History

- According to Bell Labs, on June 17, 1946, the first mobile telephone call was placed in St. Louis, Missouri from a telephone set installed in an automobile.
- In 1947 AT&T introduced Mobile Telephone Service (MTS). Extended to 100 towns and highway corridors by 1948.
 - Only 5,000 customers placing about 30,000 calls each week. Calls were set up manually by an operator and the user had to depress a button on the handset to talk and release the button to listen.
 - 3 radio channels were available and hence 3 persons in any given city could make mobile telephone calls at one time
- In 1965 AT&T introduced Improved Mobile Telephone Service (IMTS).
 - more simultaneous calls in a given geographic area, customer dialing, eliminating manual call set by an operator, and reduced the size and weight of the subscriber equipment

History: Cellular principle

- In December 1947, Douglas H. Ring and W. Rae Young of Bell Labs, proposed hexagonal cells for mobile phones in vehicles.
- No technology was available to implement those until 1960
- There were no continuity of services between several cells in that early implementation
- The concept of *frequency reuse* and *handoff* was introduced later in 1970's.

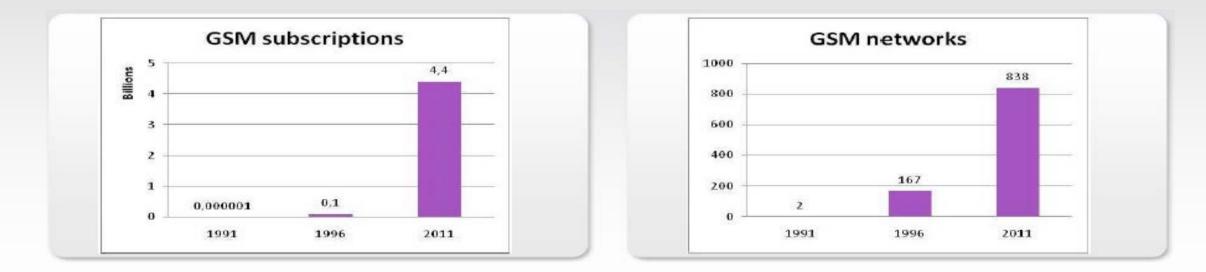
History- NMT

- NMT was first tested in Stockholm between 1975-1979
- In October 1981, Nordic countries (Norway, Sweden, Denmark, Finland, Iceland) opened NMT network with automatic roaming between countries
- In Norway 250-300 BTS were expected to provide land coverage
- Initially capacity was 35000 subscriber that could be increased to 140000
- The first mobile phone weighed about 17 kg and cost was 35000 kr!

History- NMT

- In 1984 NMT started facing capacity problem
- In 1986 NMT-450 had 87000 subscription in Norway
- To increase capacity, NMT later rolled out NMT 900 MHz band
- In 1995, two years after the start of GSM, NMT subcriber number peaked and there were 488 000 NMT subscribers in Norway
- Finally NMT were laid down in 2005, a month after 3G network was opened in Norway

History- GSM

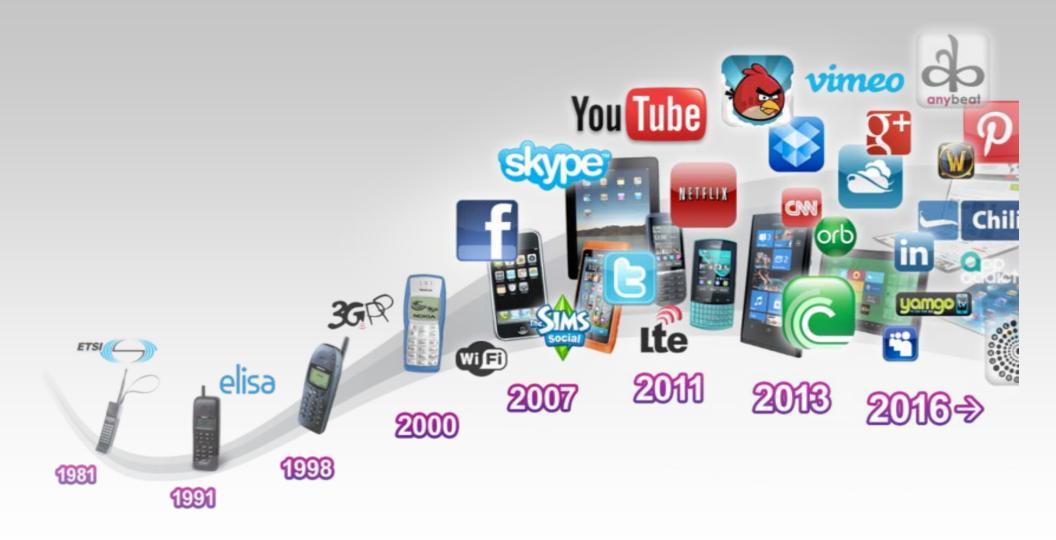

- In 1982, the Conference of European Posts and Telegraphs (CEPT) formed an Groupe Spécial Mobile (GSM) study group to develop a pan-European public land mobile system
- In 1987, 15 representatives from 13 European countries signed a memorandum of understanding to develop and deploy a common cellular telephone system
- In 1990, the Phase I of the GSM specifications for voice and Short Messaging Services (SMS) were published by ETSI
- In 1991, First commercial network launched by Radiolinja (Elisa Finland)

1991: Radiolinja (now Elisa) the first GSM Network in Finland. Mr. Harri Holkeri, then prime minister of Finland made the first GSM call.

History- GSM

1993: Tele-Mobil (Telenor Mobil) and NetCom GSM opens their networks in Norway
1998: GSM 1800 starts operation to increase the network capacity in cities in Norway
2001: GPRS service started by Telenor Mobil
2004: EDGE Service started in Norway
2003: First 3G service in Europe

Regulation & standardization

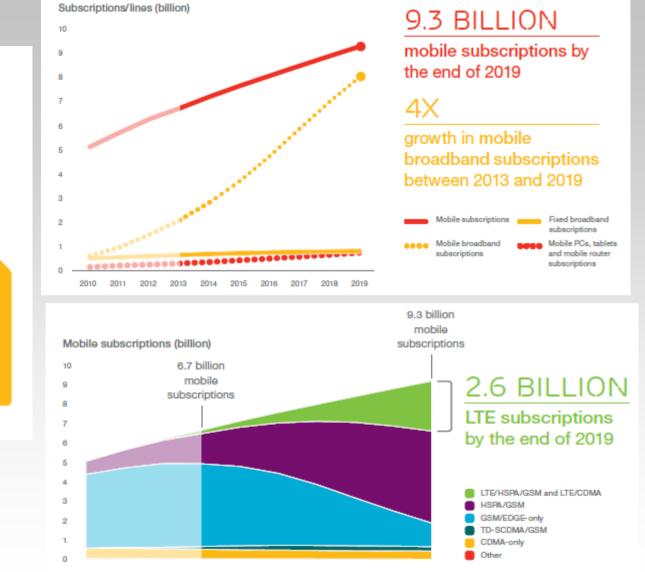

National & International regulators decide to use different frequency band for different applications. The most important regulatory bodies are:

- Post & Telecommunication Authority, regulatory authority in Norway
- CEPT (Conference of European Post and Telecommunications Administrations)
- ITU-R (International Telecommunication Union Radio Communication), international regulatory authority arrange WRC (World Radio Communication Conference)

Standard organizations develop and adopt international standards for telecommunication systems, most important bodies are:

- ETSI (European Telecommunication Standard Institute), developed GSM standards
- ITU-T (International Telecommunication Union Standardization Sector), part of the ITU standardization
- 3GPP (3rd Generation Partnership Project), cooperation between regional standardization body of Europe, North America and Asia; responsible for all standardization of 3G and GSM development

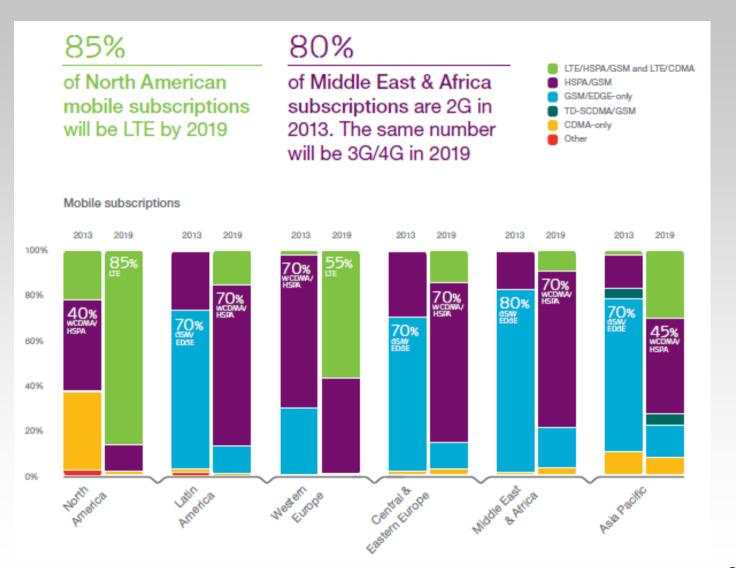
Where we are today


Trends: Mobile subscriptions

Mobile subscriptions (million)

Global mobile broadband subscriptions will exceed 2 billion in 2013

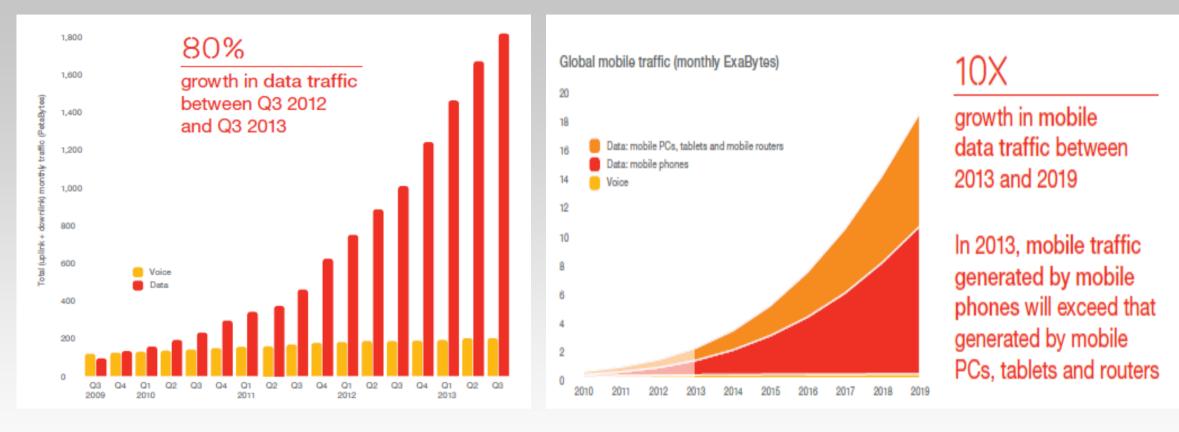
Source: Ericsson mobility report Nov/2013


2017

201

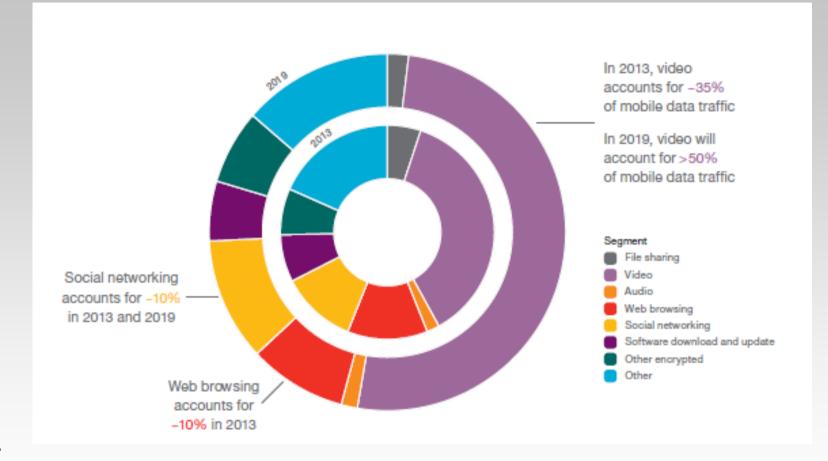
2019

2010


Mobile Subscription and technology per region

Take away-

- 3GPP technologies (GSM, WCDMA/HSPA, LTE) are dominant ones
- Going forward, main growth will be in WCDMA/HSPA and LTE technology


Trend: Traffic development

Take away-

- Mobile data is already the several times of capacity than voice in most Operators network
- And data growth will continue exponentially in the years to come

Trend: Application

Take away-

• Video is dominant traffic already and will be more dominant in the future

Challenges of building future mobile networks

Some of the challenges include

- Provide mobile subscriptions to the low income segment
- Build network capacity to meet the data traffic explosion while revenue growth is minimal
- Limited spectrum
- Invest in new technology (e.g. HSPA+, LTE) while need to keep legacy network (e.g. GSM, CDMA) for many more years
- Main revenue sources of Operators like voice, SMS is increasingly being commoditized by internet players
- Prediction of huge Machine to Machine subscription which will have low ARPU*.

Latest Smartphone

iPhone 5

- LTE bands 1 (2100), 3 (1800), 4 (AWS), 5 (850), 13 (VzW 700), 17 (AT&T 700), 25 (E1900)
- HSPA bands 850, 900, 1900, 2100
- GSM bands 850, 900, 1800, 1900
- CDMA bands 850, 1900, 2100
- DC-HSDPA

Nokia Lumia Windows Phone 8

30

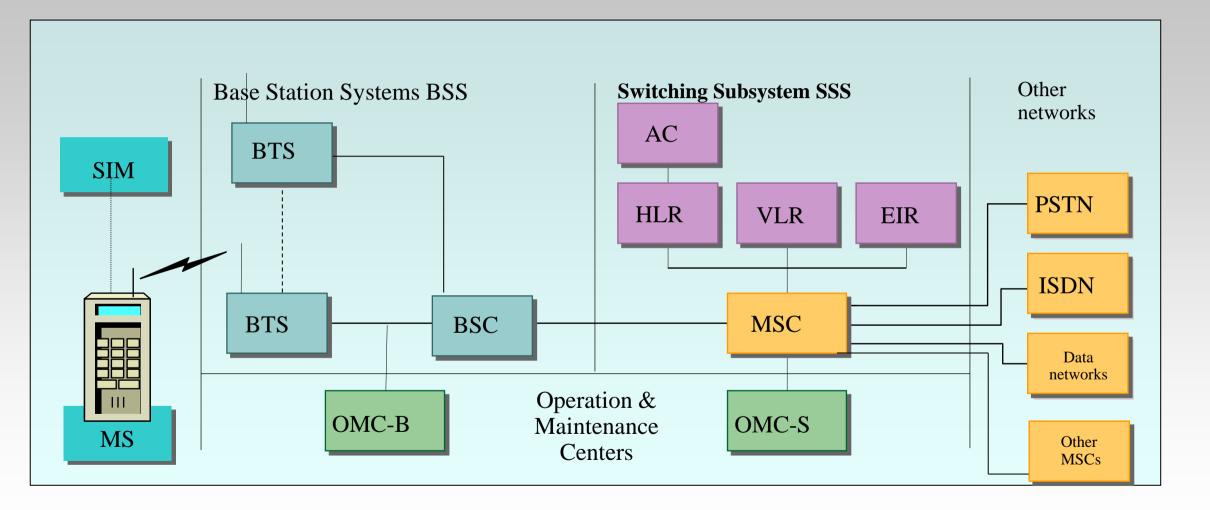
Samsung Galaxy S II LTE Sveriges första 4G telefon

🖪 Gilla 🛛 151 🕒 🖂 🚼 🚹

🗅 Fler bilder

UNIK4230: Mobile Communications

Samsung Galaxy SII LTE är en ännu snabbare telefon. Den stöder den nya 4G standarden vilket är det snabbaste mobila bredband som finns på marknaden idag. I korthet så är Galaxy SII LTE lite större, något smartare och väldigt mycket snabbare.

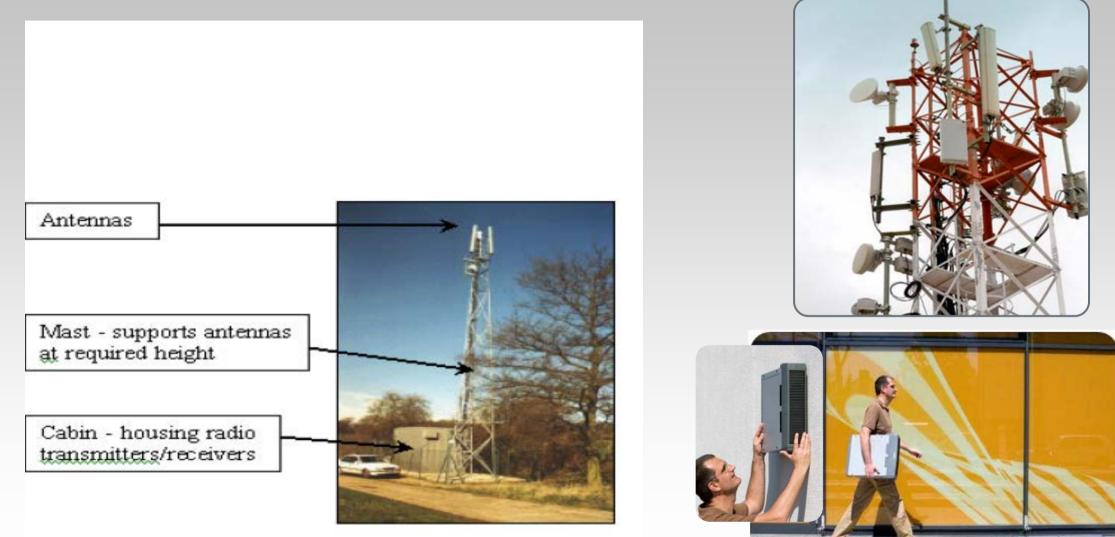

🗄 Se film

tele2

Agenda

- What is mobile communication?
- History and trends
- Elements in mobile communication systems
- Basic functionality

Architecture of GSM Network



Basic elements in mobile communication systems

- SIM A smart card stores identification (IMSI) of a subscriber, holds Auth. Key that identifies SIM on the mobile network
- ME/MU/MS the mobile device
- BTS Facilitate wirlesss communication between UE/ME and the network
- BSC Allocates radio channel to ME, several BTS under the control of one BSC
- MSC carries out call switiching (ME-ME, ME-phones of other network)
- VLR linked to MSC, temporary DB of subscriber who roamed into a specific MSC
- HLR a central DB of ME
- AuC to authenticate each SIM
- EIR keeps lists of ME which are to be banned or monitored

Basic elements

Some concepts in mobile communications

- Cell A limited geographic area covered by a BTS (e.g. max. Cell size of GSM cell 35km, typically several km)
- **Control channel** Radio channel used for all control info. e.g. call request, call set up etc.
- Information channel Radio channel used for user info. e.g. data or voice
- **Downlink (forward channel)** communication from BTS till ME
- Uplink (reverse channel) communication from ME till BTS
- Handover (handoff) transferring an ongoing communication from one BTS to another BTS typically due to movement
- Full duplex/half duplex/simplex
 - Both direction simultaneously/ both direction but only one direction at a time/Only one way communication

Basic elements

Typical microcell

Typical macrocell

Agenda

- What is mobile communication?
- History and trends
- Elements in mobile communication systems
- Basic functionality

Services Offered in GSM

Tele-services

Mobile telephonyEmergency calling

Bearer Services

Data services up to
9.6 Kbps
Short Message
Service (SMS)
Fax
Voice mailbox
Electronic mail

Supplementary services > Call Waiting > Call Hold > Call Barring > Call Forwarding > Multi Party Call Conferencing > CLIP > CLIR > CUG

Identification of user and mobile phones

A typical mobile number (MS-ISDN number) follows the numbering plan for telephony (max. 15 digits)

Country code	National mobile number		
(1-3)			

MSISDN = CC + NDC + SN

Where, CC = Country Code, NDC= National Destination Code, SN= Subscriber Number

IMSI used to identify (uniquely) mobile subscription internationally (max. 15 digits)

IMSI = MCC + MNC + MSIN

MCC [3] NO mobile country code netw

Subscription Identification

IMEI used to identify ME Type *#06# to get IMEI

Circuit switching and packet switching

Circuit Switching (CS): In circuit-switched networks, a dedicated path is set up between the two parties. This path remains for the exclusive use of both parties for the duration of the call, and is therefore not available to any other users.

Ineffiient mode

E.g. GSM used CS

Packet switching (PS): Packet switching involves dividing the data into packets (or cells or frames) prior to transmission. The length of the packets varies enormously, depending on the technology employed. Added to each packet is the destination address, together with other control information. The packets are then transmitted across the network. This addressing means there is no

requirement to set up a pre-established link. To some extent, each individual packet can be viewed as being able to find its own way to its destination.

In a packet-switched network, the resources are shared between many users.

Efficient but ofcourse takes more data field

E.g. from 2.5 G uses PS

Message services

SMS

A text communication service of mobile communication system using standard communication protocols that allow short text messages (typically 160 characters) between mobile devices or between fixed lines and mobile devices.

SMS service is the most successful mobile service commercially

MMS

MMS is a standard way to send multimedia content (e.g. text, audio, video) to and from Phone

Both SMS and MMS are 'store and forward' service

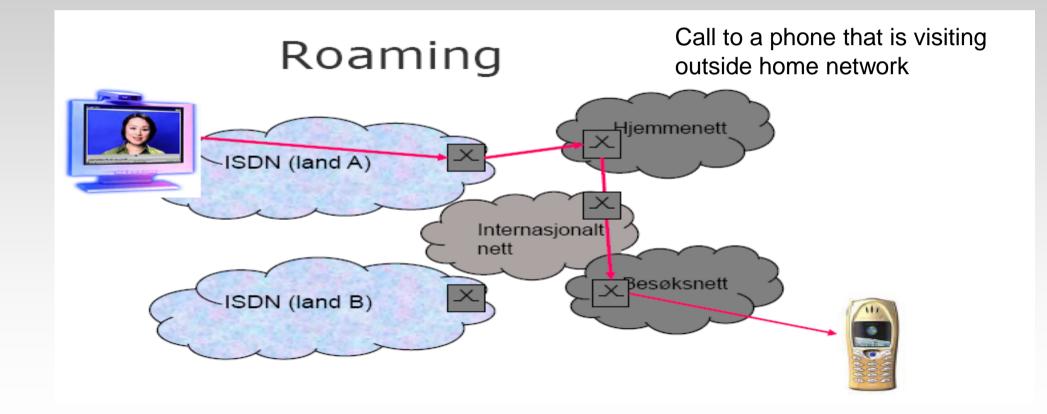
Security functionality

The purpose of security features is to protect users and the network against abuse:

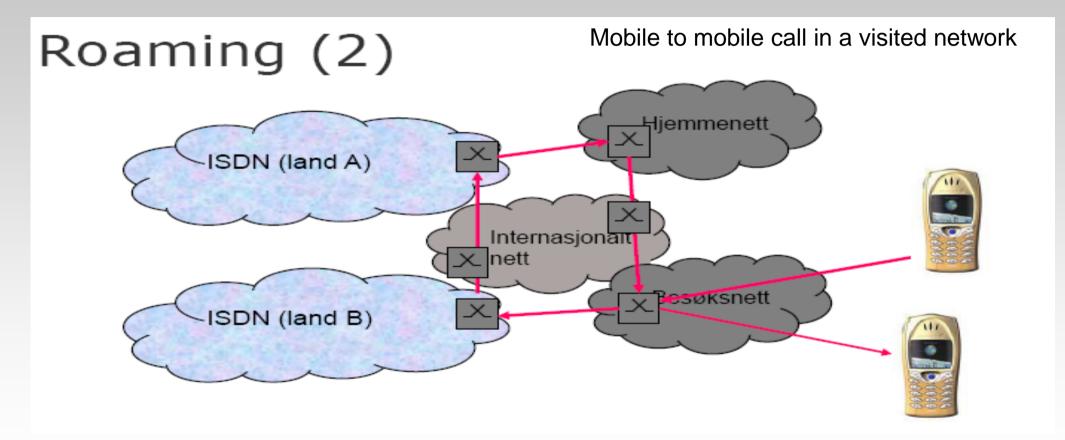
- Verification that the user has a valid subscription
- Verfication of the network that the user communicates with a 'real' network entity
- Protection of user's identity against tracking
- Protection against evesdropping by radio link

Mutual authentication crucial (e.g. In 3G, not in 2G)

User's identity information is stored both in SIM card and in the network


Advanced encryption method is used on radio channel to protect information

Security mechanisms are also used in core network (not only in access network where information is transmitted over the radio)


BUT there is no appropriate location privacy in today's mobile network

Roaming

The continuity of communication services in a location that is different from the home location where the service was registered.

Roaming

