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Game theory

General game theory

A game consists of N players, each of
whom is free to choose a strategy si ∈ Si ,
where Si is the strategy space of the i ’th
player.

Associated with every player there is a
utility function Ui : S → R, where
S = S1 × · · · × SN .

A Nash equilibrium is a strategy set
s∗ ∈ S such that

Ui (s∗i , s∗−i ) ≥ Ui (si , s∗−i ) ∀i , si ∈ S

Example: Prisoners dilemma
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Evolutionary game theory

Game theory combined with survival of the fittest

We consider a population of players employing different strategies. They are represented
by a probability distribution over the strategy space

Pi (si ) : Si → [0, 1]

Inspired by natural selection, the populations evolve according to a replicator equation

d
dt

Pi (si ) =
(
πi (si ,P−i )− σi (P)

)
Pi (si )

πi (si ,P−i ): Expected utility when using strategy si in current population

σi (P): Average utility of player i in current population
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Advanced Metering Infrastructure (AMI)
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AMI as tree structure

head-end system1

meter/relay2 aggregator3

meter4 meter5 meter6

Parent node:

f (i) : N → N

Set of children:

Chi = {j ∈ N : f (j) = i}
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Confidentiality game (Ismail et al. 2014)

head-end system1

meter/relay2 aggregator3

meter4 meter5 meter6

t4

t2

t5

t3

t6

Attacker

s4

s2

attacker Tries to steal information undetected. For every node chooses probability
of attack si ∈ [0, 1]

defender For every node chooses encryption level ti ∈ [0, 1]

Every node has a value, a cost of defending, and a cost of attacking.
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Confidentiality game (Ismail et al. 2014)

Attacker strategy space: si is the
probability of attacking node i

S =

{
s ∈ [0, 1]N :

N∑
i=1

si ≤ BS ≤ 1

}

Attacker utility function:

UA(s, t) =
N∑
i=1

(
vi (si+sf (i))(1−a)(1−ti )

− siCA,i

)

Defender strategy space: ti is the
resources spent defending node i

T =

{
t ∈ [0, 1]N :

N∑
i=1

ti ≤ BT

}

Defender utility function:

UD(t, s) =
N∑
i=1

−
(
vi (si+sf (i))(1−a)(1−ti )

− tiCD,i

)
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Constraints and features

UA(s, t) =
N∑
i=1

(
vi (si+sf (i))(1−a)(1−ti )−siCA,i

)
UD(t, s) =

N∑
i=1

−
(
vi (si+sf (i))(1−a)(1−ti )−tiCD,i

)
1

2 3

4 5 6

Attacking an undefended node always pays off:

vi (1− a)− CA,i > 0

Attacking a defended node pays off if and only if:

(1− a)
(
vi (1− ti ) +

∑
j∈Chi

vj(1− tj)
)
> CA,i

Defending an attacked node pays off if and only if:

si > s∗i =
CD,i

vi (1− a)
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Evolutionary confidentiality game

Discrete attack and defence strategy space

sk =

(
k1

K
, . . . ,

kN
K

)
tk =

(
k1

K
, . . . ,

kN
K

)
ki ∈ {0, . . . ,K} (1)

Evolution of attackers:

dPs

dt

(
sk
)
=
[
πA

(
sk ,Pt

)
− σA(Ps ,Pt)

]
Ps

(
sk
)
+ δks

Evolution of defenders:

dPt

dt

(
tk
)
=
[
πD

(
tk ,Ps

)
− σD(Pt ,Ps)

]
Pt

(
tk
)
+ δkt
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Case study

head-end system1

meter/relay2 aggregator3

meter4 meter5 meter6

Node vi CA,i CD,i

#1 12.0 6.0 1.2
#2 6.0 0.01 0.8
#3 6.0 3.0 0.6
#4 3.0 0.01 0.8
#5 3.0 0.01 0.8
#6 3.0 0.01 0.8
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Results: Evolution of attack and defence rates

Attack rate:

A(i) =
∑
k∈ΩK

s

ski Ps(s
k)

Defence rate:

D(i) =
∑
k∈ΩK

t

tki Pt(t
k)
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Results: Evolution of utility

Average attacker utility:

σA(Ps ,Pt) =
∑
k∈ΩK

s

πA

(
sk ,Pt

)
Ps

(
sk
) Average defender utility:

σD(Pt ,Ps) =
∑
k∈ΩK

t

πD

(
tk ,Ps

)
Pt

(
tk
)
,
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If evolutionary game theory is the answer, then what is the question?

Given a realistic model and a real case, we hope evolutionary game theory can help
answer:

What are the most attractive targets in the AMI?

Will changes introduce weaknesses?

What is the expected (or worst) outcome given a set of deployed security measures?

How will a rational attacker behave given the current security measures?

Which nodes should you prioritize defending?

How to adapt defence in real time?
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Where do we go from here?

Paper in progress: Evolutionary game theory for modelling confidentiality in an Advanced
Metering Infrastructure

Future work:

End-to-end encryption

Bigger AMI networks

More realistic node values, costs of encryption, costs of attacking

Attacker has knowledge about encryption levels: Stackelberg game

Modeling integrity in an AMI
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