UiO ¢ Department of Informatics
University of Oslo

Survey of Security
Diversification Mechanisms for
Internet of Things (long
version)!

Shukun Tokas , Olaf Owe , Christian Johansen
Research report 473, October 2017

ISBN 978-82-7368-438-7
ISSN 0806-3036

Abstract

Internet of Things (IoT) is the networking of physical objects hav-
ing embedded various forms of electronics, software, and sensors, and
equipped with connectivity to enable the exchange of information. The
IoT wave is considered as the next stage in “the information revolu-
tion”. IoT is gaining popularity for the great benefits it can offer in
domestic and industrial settings as well as public infrastructures. How-
ever, securing IoT ecosystems is a complex and daunting task, which
is largely disregarded by industry for the reasons: i) IoT devices are
inherently resource constrained, and i) the need of IoT devices to
be cheap is the business driving force that asks for functionality in-
stead of safety and security. The poor security protection makes IoT
systems more susceptible to exploiting vulnerabilities.Moreover, IoT
devices are meant to be deployed in large numbers (in billlions) and
in ways that make it difficult to upgrade. The fact that such a large
amount of devices are programmed in the same way allows an attacker
to exploit one vulnerability in millions of devices by repeated appli-
cation of the same attack, thus with much more gains at the same
cost. In this paper, we propose to address the challenges pertaining
to security and robustness in IoT settings by deliberate inclusion of
diversity in design and development of IoT devices. Moreover, the
diversification mechanisms have to preserve the intended semantics of
the overall application. First, we examine diversification mechanisms
in several relevant domains, and then we identify mechanisms that
could be applicable in ToT settings, in terms of feasibility, security,
and performance overhead. Also, we propose a layered approach to
program diversity by using concurrent programming to diversify pro-
gram'‘s observable behaviour.

L Address for correspondence:
Department of Informatics, University of Oslo, P.O. Box 1080 Blindern, 0316 Oslo, Norway.
E-mail: {shukunt,olaf,cristi}@ifi.uio.no

Contents

(1 Introduction|

2 IoT Attack Landscape)
2.1 Memory Corruption|.,
2.1.1 Memory Manipulation|
2.1.2 Memory Leak{
(2.2 Binary Modifications|
(2.3 Timing Based Attacks|

[3 Security and Diversity|
[3.1 Automated Software Diversity|
[3.2 Moving Target Detence Techniques|

4 Related Workl

(5 Diversity and 1oT]

[6 Layered approach to program diversity|

[r__Conclusion|

10

12

17

19

1 Introduction

Mark Weiser first phrased the vision of ubiquitous computing in 1991 as “The
most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it”[1].
Internet of Things [2] is meant to support this ubiquitous computing wave.
The term IoT was coined by the British technology pioneer Kevin Ashton
[3], who described it as a system of physical world objects connected to the
Internet via ubiquitous sensors. IoT is advancing fast towards smart homes,
smart healthcare, smart cities, and other innovative applications meant to
help people’s daily lives, by automating lot of routine activites. The adop-
tion of this paradigm in a smart infrastructure requires connecting - sensors,
actuators, other computing devices etc - to the Internet using IoT enabling
technologies. These connected things then cooperate, to achieve a common
objective for certain infrastructure (e.g. autonomous light control in public
facilities, energy efficient home, assisted living for elderly people etc).

However, majority of these loT devices are resource constrained, with low
computational capabilities and limited memory. These constraints leads to
using less resource intensive mechanisms for storage, computation, encryp-
tion etc. IoT is driven by industry and as such is focused on functionality
instead of safety or security, also because security mechanisms adds latency
to application processing. Altogether, these are often the reasons that, often
leads to poor security in IoT settings. Moreover, IoT systems have become
quite simple to program and build, e.g., see various kits/DIY for children or
hobbysts based on e.g., Arduino, RasberyPi, or Intel Edison. Additionally
Because of this there is an explosion of poorly secured IoT systems.

As mentioned earlier, [oT devices are often deployed in personal space,
public places, industrial setups etc and from these contexts they access and
transmit sensitive information. Sensitive information could be personal iden-
tification numbers, health records, movement patterns etc. Since these inten-
tionally monitor and control human environments, exploiting such systems
can have more dire consequences than usually with PCs, like serious privacy
breaches due to sensitive data from IoT sensors reaching wrong hands, or
lethal safety consequences due to hackers taking control of critical human
environment components like fire alarm, stairway lighting, etc. As a conse-
quence, these breaches then leads to privacy violations, unlawful tracking,
mass surveillance etc. Opposed to risks for persons, IoT brings new kinds
of risks for businesses that are dealing with information. In recent times
[oT devices have been used to launch major cyberattacks, such as denial-of-
service attacks, on corporations. As an example, the Mirai botnet scanned
the Internet for poorly secured IoT devices (including security cameras, baby

monitors, etc) infecting, and taking control of more than 100,000 used to
orchestrate a massive DDoS (distributed denial-of-service) attack [4] by gen-
erating masked TCP/UDP packets from infected nodes to saturate network
resources. The magnitude of the attack reached 1.2Tbit/s and made websites
— Twitter, Paypal, Amazon, CNN and many more — inaccessible for users in
US east coast and Europe, because their domain name provider, Dyn, was
forced offline by this DDoS attack. Several other large-scale DDoS attacks
that had happened recently, targeted KrebsOnSecurity.com, cloud provider
OVH, and Deutsche Telekom.

In those cases, one of main reason for success of these large scale attacks
was ubiquity of devices and presence of similar vulnerabilities in large number
of these devices. In general, computing systems are designed and developed
identically, for the economic benefits of mass production. It also has consider-
able benefits of consistent behavior, simplified distribution and maintenance.
However, all these advantages becomes potential weakness when an attacker
succeeds in exploiting a vulnerability in one device, the same exploit can
be replicated and distributed to compromise other identical devices. Due to
lack of diversity, the impact of such attacks grow with number of identical
devices.

In 1997, Forrest et al. presented an analogy between “diversity in biologi-
cal system”and “diversity in computer system”, and also suggested its benefits
of diversity in computing systems from security perspective. Diversity can
be defined as, the condition or quality of being diverse, different, or varied.
In ecology, diversity-stability hypothesis states that higher diversity within
biological communities tends to increase resilience. By resilience we mean
the ability to be resistant against attacks and the ability to recover quickly
and with limited damages in case of infringements. This hypothesis can be
utilised for building resilient IoT ecosystem.

“Huge number of connected devices and presence of same vulnerabilities
in millions of devices"was the observation that motivated us to pursue inclu-
sion of diversity in development of IoT devices for security gains.

In this paper, we make the following contribution:

i) explore relationship between Diversity and Security, ii) briefly describe
existing diversification mechanisms in computing systems, iii) identify diver-
sification mechanisms that can be userful in [oT settings, and iv) propose to
use concurrent programming (such as Creol [5]) for the development of IoT
devices, to utilise it’s inherent non-determinism.

Attacks

%\

Coding Errors Binary Modification Timing Based
(Memory Corruption)
Memory Manipulation Memory Leak
(write) (read)
DoS Code Execution

Figure 1: Attack Taxonomy

2 loT Attack Landscape

To strengthen the security mechanisms and have an effective defence, it is
essential to understand how an attacker operates. The attack taxonomy con-
sidered here, is a customized version of the Common Attack Pattern Enu-
meration and Classification (CAPEC) attack taxonomy. In this section, we
briefly discuss some of prominent attacks in cyberspace that are also applica-
ble in IoT settings. In later sections, to motivate the study of diversification
mechanisms for security gains in [oT, we discuss certain diversification mech-
anisms that can be effective against these attacks.

2.1 Memory Corruption

Memory corruption, is a generic term, that is often used to describe unin-
tended modification of the contents of virtual memory location in runtime,
and due to this an unintended use-case of the program is executed. Pro-
gramming errors are one of the most likely cause of memory corruption, with
buffer overflow as a notable vulnerability. This also include other situations
such as accessing uninitialised memory, using dangling pointers, incorrect
pointer arithmetic etc.

However, buffer manipulation is one of the most commonly exploited
vulnerability in IoT settings. According to statistics from National Vulner-

abilities Database [6], the number of buffer errors have increased from 723
to 1,916 (Jan 2012 - Sep 2017). For several reasons, such as performance or
access to low-level constructs C/C++ remain a popular choice for develop-
ment of embedded systems. Moreover, C/C++ does not provide sufficient
protection against buffer overflow. Many memory manipulation functions
(in C/C++) do not perform bound checks and can be used to read/write
unintended bounds of buffer. Not performing the bound checks, or in other
words not ensuring which memory locations are valid for the buffer, can lead
to read and write operations to be performed on memory locations asso-
ciated with other variables, or data structures. This can be exploited by
the attacker to execute arbitrary code or read sensitive information. Also,
corrupted memory contents leads to program crash or unintended program
behavior.

Memory corruption attacks can further be considered to be composed of:
memory manipulation (write) and memory leak (read) attacks. However, for
both attacks the target program performs inadequate bounds-checking on
the memory, or invalid object usage etc.

2.1.1 Memory Manipulation

While in memory manipulation attacks, attackers write beyond defined buffer-
bounds to redirect program execution or cause program to crash. For exam-
ple, an attacker can force malicious behaviour by injecting source code into
the target program, and then the injected code is executed as legitimate code
by the application. In case of modern exploitation, the attacker inject data
that leads to code-reuse exploitation (e.g. return oriented program). In an-
other example, malicious input can be used for constructing commands. A
target application accept certain input from user and uses that input to con-
struct a command, and then execute that command. Lack of proper input
validation leads to inclusion of untrusted user supplied data (HTTP head-
ers, cookies etc) in the command construction. Consequently, this results
in execution of unintended commands with privileges of target vulnerable
application.

2.1.2 Memory Leak

Memory leaks occurs when certain memory is not required by the application
anymore, but yet not freed i.e. not returned to pool of free memory. As
a consequence, these unwanted references (e.g. objects on heap) leads to
reading (and consequently leaking) sensitive information.

2.2 Binary Modifications

One of the major security challenges with IoT applications is that of reverse
engineering. To modify a particular binary, the attacker needs to understand
what it does and how it does this. In the first step, binary is disassembled
i.e. translate the binary into assembly instructions. And then, decompile
the code obtained from previous step. This step basically involves trying to
understand composing parts and finding patterns that can be translated into
source code. And finally, this compact and high-level code is then analysed.
As a result of successful analysis, the attackers can determine details of its de-
sign and implementation, and then use this knowledge to modify aplication’s
binary code. For example, the obtained information can be used to inject
backdoor code that can reveal sensitive information such as cryptographic
constants, ciphers, or user’s sensitive information.

2.3 Timing Based Attacks

Timing based attacks are based on analysis of time taken by the system to
respond to different queries and computations. Timing variations analysed
over a significant period and combined with statistical analysis, can reveal
user credentials including encryption keys. Considering context of cryptogra-
phy, the execution time for a cryptographic operation, to an extent, depends
on the key. Timing attacks were effective on popular implementation of RSA
[7, 18, @], and those implementations of RSA were also used on smartcards or
embedded devices.

3 Security and Diversity

To create a successful exploit, an attacker needs to know (or sometimes able
to predict easily) either the program layout or the position of a statements
in code or both. Considering application’s source code, the key idea of di-
versification is to randomize the place of statement in the code and/or the
memory layout. And with each diversification the timing characteristic is
always influenced.

As mentioned in earlier section, the intention of applying diversification
mechanisms is to have certain security gains. For information systems, in gen-
eral, the NIST standards [I0] require that information security encompasses,
at least, the properties of confidentiality, integrity, and availability. Other
fundamental security attributes that are often needed are: authentication,
access control, non-repudiation, secure bootstrapping, tamper-resistance for

devices, etc. Which essentially means, security aims at protecting infor-
mation against unauthorised access and modification at all levels: storage,
processing, and transit, maintaining a reliable access to information for au-
thorised entities.

In industrial setups, complex and sophisticated security mechanisms are
employed and often maintained by dedicated security team. But attack-
ers still try to find vulnerabilities to exploit systems, with purpose to get
access to intellectual assets or to destroy valuable assets. For example, in
2014 e-mail (yahoo! mail) service for 273 million users was hacked, and in
the same year login credentials along with contact information of 233 mil-
lion e-bay customers were compromised. Another, recent and IoT relevant
example, also briefly mentioned earlier, is mirai botnet attack. Mirai bot-
net scanned the Internet for poorly secured IoT devices (including security
cameras, baby monitors, etc), and then infected more than 100,000 of those
devices. Infected devices were used to orchestrate a massive DDoS attack
[4] by generating masked TCP/UDP packets from infected nodes to saturate
network resources. The magnitude of the attack reached 1.2Tbit /s and made
these websites: Twitter, Netflix, Paypal, Amazon, CNN and many more, in-
accessible for users in US east coast and Europe, because their domain name
provider, Dyn, was forced offline by the DDoS attack.

As a matter of fact, the vulnerability that mirai botnet exploited was: all
the electronic boards (for DVRs and webcams, manufactured by XiongMai
Technologies) had hardcoded, default username and password. As a result,
success of mirai botnet attack can be attributed to, presence of same vul-
nerability in approximately a million of identical devices. And impact of
such attacks can be quantified by the cost associated with i) unavailability
of information /computing resource, and i) theft of confidential information.

As has been noted, the computing systems are designed and developed
identically, for the economic benefits of mass production and also to leverage
benefits of consistent behavior and simplified maintenance etc. However,
all these advantages becomes potential weakness when an attacker succeeds
in tampering with one instance, and then automating and distributing this
attack to run on other identical instances. The impact of attack grow with
number of identical systems.

On the other hand, it is a well known fact that diversity is an impor-
tant source of robustness in biological systems. For example, an ecosystem
that includes multiple species that serve similar functions or roles, some of
these species can survive in cases of natural disturbances such as disease or
climate change. The analogy between “diversity in species’and “diversity in
computing systems ”, and the benefits of diversity in computing systems for
security gains, was noticed by Forrest et al. [I1]. Indeed, this is the main ob-

8

servation that motivates this work. Though, inclusion of diversity will come
with overheads (runtime and/or compile time) causing some inefficiency, and
will also increase development costs, but despite these challenges it also of-
fers considerable benefit of making overall IoT ecosystem robust and secure,
against automated attacks.

Having varied implementations with same functionality (i.e. diversifica-
tion) will make attacker’s task more complex, as diversification introduces
randomness and consequently makes it complex for the attacker to predict
the detailed behaviour of system. That being the case, exploiting one node
does not save any efforts on compromising another node, thus diminishing
attacker’s success rate.

3.1 Automated Software Diversity

Software diversity is a research topic with several recent comprehensive sur-
veys [12, 13],14]. Diversity techniques can be simply summarized as introduc-
ing uncertainty in the targeted program. Detailed knowledge of the target
software (i.e., the exact binary rather than the high level code) is essen-
tial for a wide range of attacks, like memory corruption attacks, including
control injection [15], [16, [I7, I8]. Diversity techniques strive to include in
software implementations high entropy so the attacker has a hard time figur-
ing out the exact internal functioning of the system. The range of techniques
for diversification through program transformation is large, and include ap-
proaches that vary with respect to threat models, security, performance, and
practicality [12].

The software design methodology N-variant is an example of automation
that we want to achieve for software diversification. The need for n teams of
developers developing n variants of the same software independently, from a
common specification, should be replaced with automated techniques based
on algorithms with mathematical guarantees (e.g., probabilistic or logical
guarantees) that would produce the n variants from the same software spec-
ification, or implementation given by one team of developers (e.g., [19]).

Software diversification has been applied at all levels of software, reaching
the microprocessors level [20], the compiler [21] or the network [22].

Automated techniques from programming languages like information flow
static analysis [23] have been extended to the dynamic setting to protect
against code injection. Dynamic taint analysis [24] automatically detects
injection attacks without need for source code or special compilation for the
monitored program, and hence works on commodity software. TaintCheck
[24] is an example tool that can perform dynamic taint analysis by performing
binary rewriting at run time. The technique was shown useful against Cross

site scripting attacks [25]. Such techniques are still very popular and have
been e.g., adopted for mobile operating systems [26] to protect the privacy
of mobile apps [27].

Automated software diversification can also be used to counter bugs in
software at runtime, thus making the system more robust. Applications to
embedded systems have been proposed [28].

3.2 Moving Target Defence Techniques

More recently the terminology “moving target defence” was adopted as an
umbrella term for various diversification techniques [29] 30} BT], with several
comprehensive surveys [32] [33] that discusses various diversity defenses with
their respective strengths and weaknesses. A moving target defense, also
referred to as moving target technique, refers to strategies and mechanisms
that introduces randomness to increase complexity and costs for attackers
in attempts to defend system. Okhravi et al. [33] categorized these de-
fense mechanisms into five domains - data, software application, runtime
environment, operating systems, hardware - according to their place within
the execution stack. Some of well-known moving target defense techniques,
to protect against different attacks include: N-version programming, SQL-
rand (applying instruction set randomization to SQL), RandSys (applying
system call instruction randomization) etc. However, listing all techyniques
is beyond the scope of this report and also considering resource constraints
with IoT devices, we will describe some strategies, and then mention their
respective performance overhead and applicability in IoT domain.

4 Related Work

The concept of diversity had been applied earlier to: machine descriptions,
source code, software applications, networks etc, in attempts to achieve broad
heterogeneity to strengthen defense against risks of monoculture|34]. Sala-
mat et al. proposes an intrusion detection mechanism, Multivariant Exe-
cution[35], that executes several variants of the same program to detect an
intrusion. All variants are generated by application of (a combination of)
diversity mechanisms such as stack base randomization, system call number
randomization, register randomization, function reordering etc. However,
all variants synchronize at system call level i.e. when variants are executed
they make same system calls. Then, this multivariant execution is monitored
by an independent program, a monitor. Any inconsistency in system calls
during execution indicates an attack. This mechanism diversifies platform

10

properties at run time by diversifying stack growth directions, system call
numbers etc.

Oberheide et al. constructed and deployed an antivirus, CloudAV|[36] , as an
in-cloud network service which employs multiple diverse detection engines for
malwares. CloudAV identifies suspicious files on end host using a lightweight
host agent, which then sends the file to a network service to identify mali-
cious content. The experiment involved a network service consisting of 10
antivirus engines and two behavioral detection engines, running in parallel.
CloudAV was able to detect 98 percent of the malware (of 7220 malware
samples), as opposed to detecting only 35 percent of malware when single
antivirus was used on the same data set.

Williams et al. [37] applied diversity techniques to extend and modify soft-
ware toolchain. Program run in a virtual machine, Strata, which can trans-
form a program at run time by injecting code. Strata, examines program
instructions and then translate them before they actually execute on host
computer. It uses two strategies to apply diversity transformations: i) CSD
or calling sequence diversity at compile time and ii) ISR or instruction set
randomisation at run time to mitigate, return-to-libc and code injection re-
spectively. Barrantes et al [38], proposes, a vitualization mechanism, Ran-
domized Instruction Set Emulation (RISE) to run randomized code. It ran-
domize instruction set at load time by XORing a random mask with every
byte of program code (including libraries). At run time, the randomized code
is XORed with same mask for code execution. Any code injection, will re-
sult in invalid execution. However, this defence is based on assumption that
attacker can not access process memory. Both techniques [37, 38| relies on
reliability and integrity of emulator.

Christodorescu et al. proposed an end-to-end diversification techniquel39] in
which diversification mechanisms are applied to randomize instruction sets,
script API, reference names of stored data and other key program elements.
These mechanisms were applied to the Javascript component and SQL DB
component of a web application. However, authors also indicates that, a
diversified program instance is a result of repeated application of a set of
transformations. This technique has potential to protect application against
both high-level as well as low-level code injection attacks.

Often, the sensors are deployed in unprotected environments and are vul-
nerable to physical attacks. Alarifi and Dul40], proposed program obfus-
cation (code and data) to alleviate reverse engineering attacks on sensor
nodes. First, the data structure that stores secret key is obfuscated using
hash functions followed by code obfuscation, and then control flow of code is
randomized. This scheme was implemented on Mica2 sensors and different
obfuscation methods are applied to each sensor. Though this diversification

11

can not protect a sensor for too long, but it assures to raise the bar for a
successful large-scale attack. With moderate runtime overhead, this tech-
nique eliminates the possibility of compromising (with same exploit) more
than one node, by ensuring attacker target each node individually.
Caballero et al. [41] studied effectiveness of diverse software implementations
on routers, to evaluate overall robustness of a network against vulnerability
exploits. They capture the effect of router failure in a topology using graph
colouring algorithm and demonstrated that small degree of diversity can pro-
vide good robustness against simultaneous router failures.

Donnell et al. [22] demonstrated an integration of diversity and distributed
coloring algorithm to prevent successful launch of large scale attacks. Soft-
ware packages can be diversified using diversification mechanisms. Network
topology is designed such that, it minimizes the number of neighbours run-
ning same software packages. Different colors are used to represent different
software packages. Several coloring algorithms were used to find an optimal
coloring solution, experimental results shows randomized hybrid and best
choice hybrid algorithm produces an effective coloring. Then the nodes are
clustered based on identified colors to minimize number of connected nodes
with same color. This approach is an effective defense against a single attack,
as it prevent propagation of attack to non-trivial number of nodes, but it can
not prevent attacks against a single node.

5 Diversity and IoT

In this section, we present a brief summary of some of the diversification
strategies that are relevant in IoT settings. The objective of applying di-
versity mechanisms in the development and operations of IoT devices is to
achieve heterogeneity in such a way, that it makes certain aspects (design,
implementation, and execution) less predictable to attackers. Each of these
diversity techniques add some randomization to introduce uncertainty in each
variant of the device or program. However, these alterations preserve seman-
tics of the program i.e. diversity should not result in producing different
program outputs.

For instance, the things or any other computing devices interact with
other devices or Internet through an Interface. Interface is an intersection be-
tween the thing and environment, which describes what can be sent /received
by the thing to/from environment. The structure and definition of interface
is fixed according to communication standards. However, rest of the imple-
mentations and configurations inside thing be done using diverse mechanisms,
while preserving the structure and semantics of the interface.

12

As has been noted from related work section, diversity techniques can be
applied to any part of: hardware, operating system, software, communication
protocols, security mechanisms and everything in between, to attain desired
diversity in memory usage, performances, timing, and program flow. We
identified several diversification mechanisms that appear to be, feasible at
reasonable cost and incur moderate overhead, applicable in IoT settings.

1. N-version approach

A system specification gives detailed description of how a system be-
haves without describing how that behaviour is designed and developed.
This fact can be useful for developing a fault tolerant system. N-version
approach essentially means that, following the same specification sep-
arate teams work independently to design and develop N-equivalent
versions [42]. As vulnerabilities may result at design and implementa-
tion phase, the N-version approach to generate variants of same system
specification by independent teams improves fault tolerance [42]. This
offers diversity at design level as well as implementation level. Diverse
sources of faults, leads to considerably transient effects. A larger direc-
tion might be combining this technique with an N-version programming
technique.

Applicability in IoT: Considering the resource constrained nature of
IoT device, this approach appears to be applicable because the specifi-
cation will be in accordance. Conversely, considering the huge number
of versions required and each version incurs an overhead in terms of
resources,/budget for N-teams working on N-variants (where N is pos-
sibly tens of thousands), this doesn’t appear to be reasonable if used
as a standalone diversification strategy. But this technique can be
combined with other diversification techniques to achieve an effective
diversification.

2. Address Space Layout Randomisation(ASLR)

ASLR is one of popular dynamic diversification techniques, used in ma-
jorly used operating systems such as Android, DragonFly BSD, iOS,
Linux, Windows, OS X etc. It provides diversity through run-time ran-
domization, by randomizing the base address for the code and data. It
performs stack randomization by changing base address of the stack,
which provides fine-grained randomization as functions and variables
will be randomly placed. It also removes heap from the data section
and places it in program memory.

Applicability in IoT: By randomising the base addresses for code, stack,

13

and heap, it provides significant security benefits but only induces in-
significant impact on the performance [43]. In a survey by [44], 70%
of manufactures preferred Linux as OS of choice for IoT gateways. In
[43] detter and mutschlechner, measures performance and entropy for
widely used implementations of Linux. ASLR can be considered an
essential feature to implement for securing key data areas of processes
running on IoT devices. ASLR raise the bar for attackers by making
it complicated to exploit buffer overflow and code-reuse vulnerabilities,
to launch memory corruption attacks such as return oriented program,
code injection, memory leak. Considering SPEC CPU2006 benchmark
suite, which is widely used to evaluate the processor performance, the
average impact of ASLR was 9% and 2% (on 32-bit and 64-bit imple-
mentations respectively) [45]. Considering reasonable overhead, and
protection against major software exploits, makes it useful in IoT set-
tings as well.

. System Call Randomization

System calls enables a program to enter kernel space to perform op-
erations on input/output devices. Randomizing system call numbers
diversifies system call interface between processes and processor [46].
Each system call is assigned a unique system call number, which is
stored in system call table. System call dispatcher uses that number
to determine which system call to invoke. An illustration of this, is
depicted in RandSys [47], which uses a combination of ISR and ASLR
technique. When a process is executed for the first time, it scans all
system call invocations and their location in memory. Then using a
secret key stored in kernel space, a randomization algorithm is applied
on {original system call number, location of system call} to generate
a ‘“randomized system call number”. This requires making changes to
system call dispatcher, to decrypt system call numbers at runtime.
Considering this randomization, if a program is compromised by in-
jecting some code then system call dispatcher cannot de-randomize the
system call due to wrong location address and the process will crash.

Applicability in loT: Overhead includes encrypting (or randomizing)
and then decrypting the system calls, by system call dispatcher. Aver-
age impact of this implementation on program execution could be upto
20% [33]. Assuming that the kernel is safe, this technique (RandSys)
can protect against memory manipulation attacks, such as code injec-
tion and control injection. This technique also appears to be useful in
[oT settings

14

4. Program Obfuscation

Code transformation techniques, transforms a source program P into
a (functionally) equivalent program P’ [48]. Objective is to make low-
level semantics of programs, harder and more complex for attacker to
comprehend, without affecting program’s observable behaviour. How-
ever, to have effective security and diversity the obfuscated code should
be difficult enough for analysis and to reverse engineer. Collberg et al
[48], identified 4 main classes of transformation, for code obfuscation
and data obfuscation: lexical transformation, control flow transforma-
tion, data flow transformation, and preventive transformation. These
transformation involves renaming variable, altering control flow of pro-
gram by using opaque predicates or graph flattening, or changing the
data encoding etc. Also, some transformations applied on data uses
hashing mechanisms and can be considered as one-way transformation
[49]. Application of varied transformations, diversifies the code in terms
of code space and execution timings, and then the obfuscated code is
distributed to clients.

Applicability in IoT: Benefit of this technique is that it can be auto-
mated to generate large number of code variants, in a platform indepen-
dent manner (considering transformation at source code level). On the
other hand, it does incur an added cost due to memory usage and exe-
cution cycles required to execute obfuscated code. Considering SPEC
CPU benchmark suite, the average impact of program ofuscation tech-
niques on performance is approximately 11% [50]. This technique is an
effective defence against attacks based on reverse engineering and code
tampering. Altogether, makes it very useful diversification technique
in [oT settings.

5. Adding No Operation Performed (NOP) Instructions
Non-functional code, such as NOP, can be inserted to generate delay
in execution or to indicate some space reservation in program memory.
A NOP instruction doesn’t affect any register, other than program
counter (PC), and consumes only one clock cycle to perform PC = PC
+ 1. NOP instruction can be inserted between instructions without
changing program semantics. This NOP insertion generates diverse
binaries and makes the program execution more unpredictable to the
attackers as variants will have different execution statistics.

Applicability in IoT: Overhead induced is proportional to number of

15

NOP instructions included in the code. It doesn’t degrade systems
performance significantly and can be combined with other diversifica-
tion mechanisms to have an effective diversification strategy. It can also
be used to detect control flow change due to instruction misalignment.

. Concurrent Programming

So far we have mentioned, several existing diversification techniques.
However, its worth noting that without originally being intended for
diversification, concurrent programming have randomization implica-
tions. We suggest to explore concurrency as a source of non-determinism
for diversifying source code in IoT devices. In concurrent settings, sev-
eral processes may execute concurrently. High level modelling language,
Creol [5], can be used for concurrent programming. Processes in concur-
rent settings may interleave with one another, generating a huge num-
ber of interleavings, making the program execution non-deterministic.
This large number of possible interleavings can be used to diversify
program execution.

Applicability in loT: Concurrent programming provides timing diver-
sity, i.e. different interleavings results in different execution sequences
accessing different memory regions. This way it makes it complicated
for the attacker to know or predict, which statement will execute next
to launch an attack. However, the high-level Creol code can be trans-
lated to low-level code in two ways. One way is to have a schedular
at the manufacturer side. Manufacturer can generate low level code
for millions of variants and distribute them to IoT devices. This will
change scheduling once and for all, yet each one diversified due to differ-
ent interleaving. Another way is, if the device is strong enough, we have
schedular built into the device, which will have different interleavings
with every execution.

In addition, to develop an understanding of how to best use these diver-
sification mechanisms, it is essential to have metrics to quantify the impact
of these diversification mechanisms on security. For example, entropy met-
rics to analyze effectiveness of randomness (or uncertainty) introduced in the
variants, generated by various diversification mechanisms.

Depending on the use case, these diversification mechanisms can be ap-
plied individually or as a composition (e.g. combining program obfuscation
and system call randomization, or combining concurrent programming and
program obfuscation etc). However, it is not very clear at this point how such

16

Obfuscated Program

(VARIANT 1)
Thread 3 Obfuscated Program 2
(VARIANT 2)
Thread 2 .
Concurrent . Obfuscated Program ,
Program ; . (VARIANT n)
hread m
Source Concurrent
Code Program ;
Concurrent
Program p

Figure 2: Managing Program Diversity.

selection should be made. And this can be considered as one of direction of
future work.

6 Layered approach to program diversity

The idea is to combine diversification techniques and concurrent program-
ming, to generate equivalent program variants that differ in memory usage,
program flow, and execution timings. And the combination of these two for
program diversity can be expressed as composed of two layers: concurrent
programming layer and program vartant layer. For the description of this
approach, consider a source code P which is written as a sequential program,
and P can also be designed as composed of m independent threads, i.e. P =
{Ty, Ty ... Tiu}.

Concurrent Programming

We propose to structure the source code into multiple threads and in-
terleave executions of these threads, either on single processor or multi-
processors. These threads communicate with each other via message passing.
However, concurrent programs can be designed independent of single or multi
processor execution environment, as the program exhibits non-determinism
by the interleaved execution (in both cases). This technique is useful to pre-

17

randomness due to
non-deterministic branch
choice

diversity due to
obfuscation of program
code

Program Segments

-
Thread Scheduler [——| Application Program (Threads)

*varied *n-version
implementations of *concurrent program programming
non-deterministic segments *program obfuscation
scheduling * non-functional code

* function outlining

Figure 3: Layered Approach To Program Diversity.

vent against attacks based on knowledge of precise timing of events, because
it becomes challenging for the attackers to observe when a program segment
might be executing. However, it would be challenging for the program de-
signers to determine which program segments to include in which threads
and when these threads interact with each other, without affecting program
correctness.

Program Variant

Applying diversification techniques on threads, as mentioned in previous
section, functionally equivalent yet diverse variants can be generated. If
application of certain diversification techniques can generate n-variants for
one thread, then a source code P (with m threads) can have m x n variants.
Also, programmer defined points of suspension adds to non-determinism, and
can be explicitly added to the variants.

Inclusion of concurrent programming layer adds to the difficulty for at-
tacker (especially for timing based attacks) because executing a sequential
program reveals more information about program behaviour than execut-
ing an equivalent program as concurrent threads non-deterministically. This
layered approach aids in managing diversity. For example, consider a source
code P can designed (using concurrent programming) in p different ways,
each program have m threads, and each thread can be implemented (apply-
ing diversification techniques) in n different ways. This way we have pxmxn
program variants.

18

7 Conclusion

In this comprehensive study of diversification techniques for IoT we have
made several concrete observation identifying open research questions. Two
major general points could be summarized here.

(A) The field of diversification techniques is highly active with many recent
surveys and results published in venues of highest ranking, like IEEE
and ACM journals and conferences (e.g., ACM Computing Surveys or
[EEE Symposium on Security and Privacy), and dedicated workshops
of strong impact like Workshop on Moving Target Techniques. How-
ever, the techniques are usually developed for standard I'T systems; i.e.,
with powerful operating systems or running in clouds or personal com-
puters. We found almost no works specially targeting [oT systems, let
alone surveys or comprehensive studies of implementations for IoT sys-
tems (i.e., where results like computation, memory, usability would be
studied). Therefore, we see this study as timely and the open questions
as useful for the advancement of security in IoT.

(B) From the existing diversification techniques (also called moving target
techniques) we gave an initial opinion on which can be more easily ap-
plied to IoT systems, and which not. However, for those that we think
are applicable more research is needed to perform thorough studies of
feasibility and usability, both because of the constrained nature of the
IoT devices (so not all heavy computations are feasible) and also be-
cause of the software development and business/feature requirements
on IoT systems (for which we expect only the most easy to use methods
would gain wide adoption). Still, there are many security and privacy
aspects that we see in standard IT systems which could be useful for
diversification. These could be applied at various levels and targeting
different security and privacy requirements.

We also identify new possible lines of diversification techniques which
could be developed starting from modern programming languages, like
the one we proposed based on modern concurrent programming lan-
guages, like the popular GoLang [51] or the object-oriented Creol [5],
or modelling languages like Statecharts [52] or ThingML [53].

References

[1] M. Weiser, “The computer for the 21st century,” Scientific american,
vol. 265, no. 3, pp. 94-104, 1991.

19

2l

13l

4]

[5]

19]

[10]

[11]

[12]

[13]

L. Atzori, A. Tera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787-2805, 2010.

K. Ashton, “That internet of things thing,” RFiD Journal, vol. 22, no. 7,
2011.

T. Pultarova, “Webcam hack shows vulnerability of connected devices,”
Engineering € Technology, vol. 11, no. 11, pp. 10-10, 2016.

E. B. Johnsen, O. Owe, and I. C. Yu, “Creol: A type-safe object-oriented
model for distributed concurrent systems,” Theoretical Computer Sci-
ence, vol. 365, no. 1-2, pp. 23-66, 2006.

“National vulnerability database.” https://nvd.nist.gov/. Accessed:
2017-10-1.

W. Schindler, “A timing attack against rsa with the chinese remainder
theorem,” in CHES, vol. 1965, pp. 109-124, Springer, 2000.

J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and
J.-L. Willems, “A practical implementation of the timing attack,” in
International Conference on Smart Card Research and Advanced Appli-
cations, pp. 167-182, Springer, 1998.

P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,

dss, and other systems,” in Annual International Cryptology Conference,
pp- 104-113, Springer, 1996.

R. Kissel, “Glossary of key information security terms,” NIST Intera-
gency Reports NIST IR, vol. 7298, no. 3, 2013.

S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer
systems,” in Operating Systems, 1997., The Sizth Workshop on Hot Top-
ics in, pp. 67-72, IEEE, 1997.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in 2014 IEEE Symposium on Security and Privacy,
pp. 276291, IEEE, May 2014.

S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Makelda, J. Holvitie,
S. Hyrynsalmi, and V. Leppéanen, “A survey on aims and environments
of diversification and obfuscation in software security,” in Proceedings
of the 17th International Conference on Computer Systems and Tech-
nologies 2016, CompSysTech ’16, (New York, NY, USA), pp. 113-120,
ACM, 2016.

20

https://nvd.nist.gov/

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

B. Baudry and M. Monperrus, “The multiple facets of software diver-
sity: Recent developments in year 2000 and beyond,” ACM Computing
Surveys (CSUR), vol. 48, no. 1, p. 16, 2015.

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented pro-
gramming: A new class of code-reuse attack,” in Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Se-

curity, ASTACCS 11, (New York, NY, USA), pp. 3040, ACM, 2011.

E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good in-
structions go bad: Generalizing return-oriented programming to risc,”
in Proceedings of the 15th ACM Conference on Computer and Commu-
nications Security, CCS ’08, (New York, NY, USA), pp. 27-38, ACM,
2008.

V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in 2012 IEEE Symposium on Security and Privacy,
pp. 601-615, IEEE, May 2012.

R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans. Inf.
Syst. Secur., vol. 15, pp. 2:1-2:34, Mar. 2012.

B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: A secretless frame-
work for security through diversity.,” in USENIX Security Symposium,
pp- 105-120, 2006.

E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core fusion: Ac-
commodating software diversity in chip multiprocessors,” in Proceedings

of the 34th Annual International Symposium on Computer Architecture,
ISCA 07, (New York, NY, USA), pp. 186-197, ACM, 2007.

T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner,
A. Gal, S. Brunthaler, C. Wimmer, and M. Franz, Compiler-Generated
Software Diversity, pp. 77-98. New York, NY: Springer New York, 2011.

A. J. O’Donnell and H. Sethu, “On achieving software diversity for im-
proved network security using distributed coloring algorithms,” in Pro-
ceedings of the 11th ACM conference on Computer and communications
security, pp. 121-131, ACM, 2004.

21

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32|

A. Sabelfeld and A. C. Myers, “Language-based information-flow se-
curity,” IEEE Journal on Selected Areas in Communications, vol. 21,
pp- 519, Jan 2003.

J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software,” in Proceedings of the Network and Distributed System Secu-
rity Symposium, NDSS 2005, San Diego, California, USA, The Internet
Society, 2005.

P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kriigel, and G. Vigna,
“Cross site scripting prevention with dynamic data tainting and static
analysis,” in Proceedings of the Network and Distributed System Security
Symposium, NDSS 2007, San Diego, California, USA, 28th February -
2nd March 2007, The Internet Society, 2007.

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Trans. Comput. Syst., vol. 32, pp. 5:1-5:29, June 2014.

M. L. Polla, F. Martinelli, and D. Sgandurra, “A survey on security
for mobile devices,” IEEE Communications Surveys Tutorials, vol. 15,
no. 1, pp. 446471, 2013.

A. Hoéller, T. Rauter, J. Iber, and C. Kreiner, Towards Dynamic Software
Diversity for Resilient Redundant Embedded Systems, pp. 16-30. Cham:
Springer International Publishing, 2015.

S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, eds.,
Moving Target Defense - Creating Asymmetric Uncertainty for Cyber
Threats, vol. 54 of Advances in Information Security. Springer, 2011.

S. Jajodia, A. K. Ghosh, V. S. Subrahmanian, V. Swarup, C. Wang,
and X. S. Wang, eds., Moving Target Defense II - Application of Game
Theory and Adversarial Modeling, vol. 100 of Advances in Information
Security. Springer, 2013.

S. Jajodia and K. Sun, eds., Proceedings of the First ACM Workshop on
Mowving Target Defense, MTD ’14, Scottsdale, Arizona, USA, November
7, 2014, ACM, 2014.

J. Xu, P. Guo, M. Zhao, R. F. Erbacher, M. Zhu, and P. Liu, “Comparing
different moving target defense techniques,” in Proceedings of the First

22

33]

[34]

[35]

[36]

37]

[38]

[39]

[40]

[41]

42|

[43]

ACM Workshop on Moving Target Defense, MTD 14, (New York, NY,
USA), pp. 97-107, ACM, 2014.

H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein, “Finding focus in
the blur of moving-target techniques,” IEEE Security Privacy, vol. 12,
pp. 16-26, Mar 2014.

B. Schneier, “The dangers of a software monoculture,” Information Se-
curity Magazine, 2010.

B. Salamat, T. Jackson, G. Wagner, C. Wimmer, and M. Franz, “Run-
time defense against code injection attacks using replicated execution,”
IEEFE Transactions on Dependable and Secure Computing, vol. 8, no. 4,
pp- 588-601, 2011.

J. Oberheide, E. Cooke, and F. Jahanian, “Cloudav: N-version antivirus
in the network cloud.,” in USENIX Security Symposium, pp. 91-106,
2008.

D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C. Knight, and
A. Nguyen-Tuong, “Security through diversity: Leveraging virtual ma-
chine technology,” IEEFE Security € Privacy, vol. 7, no. 1, 20009.

E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanovi¢, “Random-
ized instruction set emulation,” ACM Transactions on Information and
System Security (TISSEC), vol. 8, no. 1, pp. 3-40, 2005.

M. Christodorescu, M. Fredrikson, S. Jha, and J. Giffin, “End-to-end
software diversification of internet services,” Mowving Target Defense,
pp. 117-130, 2011.

A. Alarifi and W. Du, “Diversify sensor nodes to improve resilience
against node compromise,” in Proceedings of the fourth ACM workshop
on Security of ad hoc and sensor networks, pp. 101-112, ACM, 2006.

J. Caballero, T. Kampouris, D. Song, and J. Wang, “Would diversity
really increase the robustness of the routing infrastructure against soft-

ware defects?.” Department of FElectrical and Computing Engineering,
p. 40, 2008.

A. Avizienis, “The n-version approach to fault-tolerant software,” IEFEE
Transactions on software engineering, no. 12, pp. 1491-1501, 1985.

J. Detter and R. Mutschlechner, “Performance and entropy of various
aslr implementations,” 2015.

23

[44]

[45]
|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

“Capec-123: Buffer manipulation.” https://capec.mitre.org/data/
definitions/123.html. Accessed: 2017-09-30.

M. Payer, “Too much pie is bad for performance,” 2012.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in Security and Privacy (SP), 2014 IEEE Symposium
on, pp. 276291, IEEE, 2014.

X. Jiang, H. J. Wangz, D. Xu, and Y.-M. Wang, “Randsys: Thwart-
ing code injection attacks with system service interface randomization,”
in Reliable Distributed Systems, 2007. SRDS 2007. 26th IEEFE Interna-
tional Symposium on, pp. 209-218, IEEE, 2007.

C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscat-
ing transformations,” tech. rep., Department of Computer Science, The
University of Auckland, New Zealand, 1997.

M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse engineer-
ing of malware emulators,” in Security and Privacy, 2009 30th IEEE
Symposium on, pp. 94-109, IEEE, 2009.

C. Collberg, S. Martin, J. Myers, and J. Nagra, “Distributed application
tamper detection via continuous software updates,” in Proceedings of the

28th Annual Computer Security Applications Conference, pp. 319-328,
ACM, 2012.

A. A. A. Donovan and B. W. Kernighan, The Go Programming Lan-
guage. Addison-Wesley, 2015.

D. Harel and A. Naamad, “The STATEMATE semantics of state-
charts,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 5, no. 4, pp. 293-333, 1996.

N. Harrand, F. Fleurey, B. Morin, and K. E. Husa, “ThingML: a lan-
guage and code generation framework for heterogeneous targets,” in
Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, pp. 125-135, ACM, 2016.

24

https://capec.mitre.org/data/definitions/123.html
https://capec.mitre.org/data/definitions/123.html

	Introduction
	IoT Attack Landscape
	Memory Corruption
	Memory Manipulation
	Memory Leak

	Binary Modifications
	Timing Based Attacks

	Security and Diversity
	Automated Software Diversity
	Moving Target Defence Techniques

	Related Work
	Diversity and IoT
	Layered approach to program diversity
	Conclusion

