## **UNIK4750 - Measurable Security for the Internet of Things**

# L5 – Service Implications on Functional Requirements

György Kálmán, Mnemonic/CCIS/UNIK gyorgy@unik.no

http://cwi.unik.no/wiki/UNIK4750, #IoTSec, #IoTSecNO



Josef Noll **UiO/UNIK** josef@unik.no

# Overview

- Recap: the electric grid example
- The problem of QoS
- QoS in communication
- QoS in automation
- Intrinsic QoS
- Conversion, operating envelope
- Adaptation of the fault-tree to QoS requirements
- Applicability of Safety and the V-model
- Research efforts
- Conclusion







## **Electric grid**

- Nation/continent-wide critical infrastructure
- Synchronized from production to consumer
- Key to most services of the society
- Reaches in practice every home and installation
- Spreads from "atomic" sensors to big data and exchange of information
- Good QoS example because of protection and supply stability





UNIK4750, Measurable Security for IoT - #IoTSec



## on d exchange of information d supply stability







## The problem of QoS

- Evolution of communication networks
- Best effort is the most efficient and is dominating in virtually all segments
- Typical communication with at least one human party tolerates very much
- Works quite well.
- Automation: has requirements because of the physical connection
- Many requirements are only heritage from old times
- Are very much "nothing" for an acceptably modern GE network
- QoS for the control loop
- QoS over the internet







## **QoS** in communication

- Long tradition with high QoS neworks (SDH, PDH, traditional circuit switching)
- ATM has failed because of excessive cost
- Carrier Ethernet is the current choice of technology
- Overprovisioning works
- Diffserv-intserv
- In a multi-provider path, it is problematic to quarantee QoS
- Technologies are available, like MPLS industrial problems are either related to cost or inability to identify requirements (and have higher cost because of that)

- Current status: we are trying to implement services, which made ATM expensive and fail, maybe this time it will be OK
- **IEEE 802.1 TSN**
- Typical metrics: bandwidth, delay, jitter, burstiness, redundancy

## 







# **QoS** in industry

- Connectivity
  - → Direct wiring
  - → Low speed serial buses
  - → Ethernet
- Key in the local automation network
- Very fast reaction times
  - ➡ Motion control
  - → Robotics
  - Substation automation
- Fast reaction times
  - ➡ Factory automation
- Slow reaction times
  - Process automation
- Upper levels are more a telco question
- Ethernet is everywhere
- Typical metrics: sampling frequency, delay, jitter, redundancy
- Time synchronization



## ! This is when engineering tries to convert their requirements into networking terms!





## **Intrinsic QoS**

- Taking the most problematic part of the automation QoS → E.g. Profinet IRT or EtherCAT
- Relaxed QoS
  - Supervisory Control and Data Aquisition
  - → Remote management
- High QoS
  - → Electric grid
  - Electrified production platforms





High Performance for Harsh Environments. The EtherCAT Box with IP 67 protection.







## **Identifying QoS metrics in automation**

• Conversion of requirements: → Delay, jitter: this is the same → But: frequency, number of samples Communication overhead

| 「配置後令書」」とてた前日                            | 四日 *  | - A.   | 0 2  | 111 | 7 1.  |
|------------------------------------------|-------|--------|------|-----|-------|
| Parameter                                | Value | Тура   | Unit | Min | Max * |
| Interval Time VerySlow                   | 8000  | lint   | ms   | 60  | 8640- |
| Interval Time Slow                       | 4000  | dint   | ms   | 60  | 864C  |
| Interval Time Normal                     | 2000  | dint   | ms   | 60  | 8640  |
| Interval Time Fast                       | 1000  | dint   | ms   | 60  | 864C  |
| Interval Time VeryFast                   | 500   | dint   | ms   | 60  | 8640  |
| CV veryslow 1131 Task timeout before ISP | 24000 | dint   | ms   | 60  | 8640  |
| CV Slow 1131 Task timeout before ISP     | 12000 | dint   | ms   | 60  | 8640  |
| CV Normal 1131 Task timeout before ISP   | 6000  | dint   | ms   | 60  | 864C  |
| CV Fast 1131 Task timeout before ISP     | 3000  | dint   | ms   | 60  | 8640  |
| CV VeryFast 1131 Task timeout before ISP | 1500  | dint   | ms   | 60  | 864C  |
| Protocol                                 | MMS   | string |      |     | 150   |





The bay units send to the central unit the following information:

- the current values of each phase sampled with 1 ms time intervals
- presence or absence of the three phase voltages
- the status of bus disconnecting switches of the bay using two bit status signals
- starting command for the bay breaker failure protection
- trip signals

The central unit sends to the bay units the following information:

- synchronizing signal with 1 ms time intervals
- trip command, when protection activates

| Applications       | Source<br>IED            | IEC 61850<br>Message Type | SCN<br>Traffic Type | Destination<br>IED        | Sampling<br>Frequency (Hz) | Pack<br>Size (B |
|--------------------|--------------------------|---------------------------|---------------------|---------------------------|----------------------------|-----------------|
| Sampled value data | MU IED                   | 4                         | Raw data message    | Protection IEDs           | 4800 Hz                    | 126             |
| Protection         | Protection IED           | 1, 1A                     | GOOSE trip signal   | CB_IEDs                   | -                          | 50              |
| Controls           |                          | 3                         | Control signals     | Protection IED,<br>CB_IED | 10 Hz                      | 200             |
| File transfer      |                          | 5                         | Background traffic  | Station server            | 1 Hz                       | 300 K           |
| Status updates     | Protection IED<br>CB_IED | 2                         | Status signals      | Station server            | 20 Hz                      | 200             |
| Interlocks         | Protection IED           | 1, 1A                     | GOOSE signal        | CB_IEDs                   | -                          | 200             |
|                    |                          |                           |                     |                           |                            |                 |

http://www.tandfonline.com/doi/pdf/10.1080/23317000.2015.1043475









## **Conversion and operating envelope**

- Operating envelope: the operational parameters where our network can work "well", depends on the technology and on the task • For traffic estimation we need it in "communication" QoS
- → Bandwidth, delay, jitter, (redundancy)
- Often can be done with simple arithmetic with a certain confidence level











## **Safety integrated systems**

- Imagine as yellow envelopes mixed into the traffic
- Requires software and might require hardware extensions
- The safety function is not depending on QoS!
- → Safety levels: SIL 2, 3 and 4
- → Until approx. SIL 3, a normal, RSTP-redundant LAN is sufficient









## **Safety and security**

- Connected because security threats are resulting in safety threats, which have to be mitigated
- Different fields but approaching similar problems
- The process behind is completely different: safety deals with a static statistical process, while security problems are the result of an active, changing process
- Stopping somebody to do something to avoid damage • Even if something has happened, avoid or limit damage
- Cyber-physical interactions
- IT security is not covering this field
- Safety is focusing on the physical interactions
- Safety is using extensive diagnostics to check itself
- Timescale of protection and data validity

## 



Jan 2016, György Kálmán, Josef Noll



11

## **Following up requirements**

- One of the steps which typically are left out
- I see (again) the safety workflow as the one where we could get some inspiration from:







# Results in: "time sync precision requirement of 10us" Why? – nobody knows.

| Requirement                                                                     | Source               | Status   | Objective<br>References | Design<br>References | Test Case<br>References |
|---------------------------------------------------------------------------------|----------------------|----------|-------------------------|----------------------|-------------------------|
| 1.0 Change Order<br>system                                                      | Sponsor<br>Interview |          | BO1, PO2                |                      | TC1                     |
| 1.1 Replace daily<br>inventory updates<br>with immediate stock<br>level updates |                      | Pending  |                         |                      |                         |
| 2.0 Change<br>Customer system                                                   | RW1                  | Approved | BO2                     |                      |                         |
| 2.1 Integrate with<br>Order                                                     | RW1                  | Approved |                         | TD2                  | TC2                     |
| 2.2 Allow updating at<br>order entry                                            | RW1                  | Approved |                         |                      | TC2                     |

http://www.kaboomlatam.com/novosite/requirements-traceability-matrix-examples-815.png





# **L5 Conclusions**

- Services in IoT have an implication typically in the communication and security domain of IT
- The QoS requirements are more "hard" than in non-automation cases
- The metrics used at OT and at IT do differ, but with some reason we can convert them
- Big systems require a standardized, structured approach for planning infrastructure services
- Following up requirements is important as:
  - Unnecessary requirements might lead to either not feasible projects or higher cost
  - Necessary requirements shall be taken into account (and only those)
  - Following aggregated resource usage in the infrastructure is important
- Non-functional requirements are less typical in M2M systems









