

UiO **5 Universitetet i Oslo**

UNIK4230: Mobile Communications – Spring 2015 Per Hjalmar Lehne

per-hjalmar.lehne@telenor.com

Mobile: 916 94 909

Combating the Effect of Fading in Mobile Systems (Chapter 5) 26 February 2015

Agenda

- Introduction of fading
 - Effect of fading
- Diversity and types of diversity
- Combining techniques of diversity
- Equalizers
- Exploiting multipath with MIMO

Agenda

• Introduction of fading

- Effect of fading
- Diversity and types of diversity
- Combining techniques of diversity
- Equalizers
- Exploiting multipath with MIMO

Introduction

• Fading leads to-

- Quick signal variation (Rayleigh, short term)
- Slow signal variation (lognormal, long term)
- Inter-Symbol Interference (ISI)
- Varying ways to combat fading-
 - Micro diversity
 - Macro diversity
 - Channel equalizer

Effects of fading (I)

- When signal varies, Signal-to-Noise Ratio (SNR) varies and Bit Error Rate (BER) varies over time.
 - The total BER becomes larger than in a non-fading case with the same average power
- For BPSK modulation (details in *Lec 6 Modulation*), probability of error with and without fading becomes:

$$p(e) = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\gamma_0}\right) \quad \text{, without fading}$$
$$p_{fad}(e) = \frac{1}{2} \left[1 - \sqrt{\frac{\gamma_0}{1 + \gamma_0}} \right], \quad \text{with fading}$$

• Where γ_0 is the SNR

Effects of fading (II)

7

- BER for BPSK-modulation without fading and with Rayleigh-fading
 - Fade-margin *M* for BER=10⁻³ is 17 dB

Other signal degrading effects

- Random frequency modulation (FM) because of Doppler (chap. 2)
- Co-channel interference (chap. 4)
 - Both these effects creates a «floor» for the BER. BER will not go below a certain value even with increased SNR
- Intersymbol interference (ISI) because of frequency selective fading

Signal degradation from Doppler

• BER for different values of the product f_dT , where f_d is maksimum Doppler-skift and T is the symbol length

Signal degradation from co-channel interference

• BER for different values of the signal-to-interference ratio γ_{CCI} .

Agenda

- Introduction of fading
 - Effect of fading

• Diversity and types of diversity

- Combining techniques of diversity
- Equalizers
- Exploiting multipath with MIMO

Diversity (I)

- Diversity means the *combination of independent copies of the received signal*, for example, by using multiple receiver antenna
- The main idea is the probability that several independent versions of the signal has very low signal level at the same time is small.
- For example, the probability that *M* independent Rayleigh distributed signals at the same time is below a threshold value ζ_T is:

$$P_M(\zeta_T) = \left[1 - \exp\left(-\frac{\zeta_T}{\zeta_0}\right)\right]^M$$

• where ζ_0 is the average power

Diversity (II)

 The probability that at least one of *M* independent Rayleigh fading channels has power above ζ_T:

Types of diversity

- Space diversity
 - Antenna separated in distance
- Angular diversity
 - Antennas with different pointing directions
- Frequency diversity
 - The same signal is transmitted at different frequencies
- Polarization diversity-
 - Antennas with different polarization (field orientation)
- Time diversity
 - The same signal is repeated at different times
- Multi-path diversity
 - Signals with different propagation paths are combined

Space diversity

- Two or more antennas in different positions have uncorrelated fading patterns if separation is large enough
- Required separation depends on the *angle separation* of the signal components
- Extremes are:
 - If multi-path components arriving with equal probability from all directions necessary distance between two antennas is $\lambda / 2$
 - If all signal components arrive from the same direction space diversity will have no effect, no separation is large enough

Space diversity at the base station

Polarization diversity

- Signal at different polarization has uncorrelated fading
 - For example vertical polarization & horizontal polarization
- Exploits that the channel depolarizes the signal and that the signal received on different polarizations are fading uncorrelated
- Disadvantage of this method is that a maximum of 2 uncorrelated polarization can exist (diversity order 2)

Polarization diversity at the base station

Cross polar antenna used increasingly to save space +/- 45° is normal

Source: Kathrein

Multipath diversity

- If multi-path components have a large enough separation that the can be distinguished from each other, they can be combined in the receiver
- This is used in RAKE receivers, which are widely used in CDMA systems (Chapter 6 – course book)

Other diversity concepts

• Angular diversity:

- The receiving antennas have different pointing direction.
- Signal components arriving from different directions is normally uncorrelated
- Angular diversity requires no physical distance between the antennas, and can therefore easier implemented on a mobile station

• Frequency diversity:

- The same signal is sent on different frequencies, with so much distance that the signals are uncorrelated fading (> coherence bandwidth)
- Only one antenna needed
- Not bandwidth efficient
- Not effective over frequency flat channel

• Time diversity:

- The same signal is sent several times, with a difference that exceeds the channel coherence time
- Only one antenna is required
- Reduction in efficiency
- Not effective over slow fading channel
- Error correcting coding can be viewed as a form of time diversity

Agenda

- Introduction of fading
 - Effect of fading
- Diversity and types of diversity
- Combining techniques of diversity
- Equalizers
- Exploiting multipath with MIMO

Combining techniques for diversity

- Selection combining (SC)
 - Selects all times the strongest signal (branch)
- Maximum-ratio combining (MRC)
 - Adds all branches with different weight based on SNR
- Equal-gain combining (EGC)
 - Adds all branches of equal weight

Selection combining (SC)

- Choose the diversity branch with the strongest SNR
- Possible solution to avoid continuous testing of all branches:
 - Use same branch until it goes below a given threshold value, and only then test all the stuff and select the strongest.

Source: William C.Y. Lee, Mobile Communications Design Fundamentals

Selection combining (SC)

Maximum-ratio combining (MRC)

- Scales all the branches by a factor gn that is proportional with SNR of each branch
- This is an optimum way to combine the signals
 - More complex than selection combining

Maximum-ratio combining (MRC)

Equal gain combining (EGC)

- Scales all branches with the same weight
- Performance is worse than the MRC, but better than SC
- Less complex than MRC
- Performance between SC and MRC,
 - The average SNR by using EGC is:

$$\gamma_{EC} = \gamma_0 \left[1 + \frac{\pi}{4} (M - 1) \right]$$

Comparing diversity methods:

• All results are for an assumption of uncorrelated branches, with a correlation equal to ρ , performance is reduced approx. a factor $\sqrt{(1-\rho)^2}$

Performance improvement – BER with diversity

• Average BER for a diversity method can be found using the following expression:

$$p_{av}(e) = \int_{0}^{\infty} p(e) f(\gamma) d\gamma$$

- Where p(e) is the bit error probability as a function of SNR, γ, and f(γ) is the probability density distribution of the SNR.
- This gives the BER as a function of average SNR, γ_0 .

Performance improvement - SC

 Average BER for selection combining for different number of diversity channels (BPSK modulation):

Performance improvement – MRC (1)

 Average BER for maximum-ratio combining for different number of diversity channels (BPSK modulation):

Performance improvement – MRC (2)

- Average BER without diversity and with two-branch maximum ratio-combining
- Diversity lowers the "floor" for the bit error rate -

Macro diversity

- The techniques discussed so far fights fast (short term) fading
- To combat slow (long term) fading required separation between recipients who are high in relation to terrain and building formations affects the signal distribution
- This is called macro-diversity, or the base station diversity and is usually based on communication with two or more base stations
- Hand-over of the mobile systems can be seen as a form of macro diversity

Agenda

- Introduction of fading
 - Effect of fading
- Diversity and types of diversity
- Combining techniques of diversity
- Equalizers
- Exploiting multipath with MIMO

Channel equalization

- When the time dispersion is significant compared to the symbol length it leads to *Inter-Symbol Interference* (ISI)
- In the frequency domain, this corresponds to the coherence bandwidth being smaller than the information bandwidth, which leads to frequency selective fading
- ISI is a particular problem at high rates, when the symbol times are short
- ISI can be mitigated by using channel equalization, which means to filter the signal so that it counteracts the frequency-selective fading and ISI

Equalizer requirements (I)

- The transfer function of the channel is: $H_c(f) = A(f) \exp[\theta(f)]$
 - Where A(f) is the amplitude and $\theta(f)$ is the phase response

• The envelope delay is:
$$\tau(f) = -\frac{1}{2\pi} \frac{d\theta(f)}{df}$$

- The criterion for a distortion free channel is: $A(f) = A_0$, $\tau(f) = \tau_0$
 - Constant amplitude and linear phase (within the information bandwidth)
 - If this is not fulfilled, the signal will be distorted and experience ISI

Equalizer requirements (II)

• The equalizer is a filter with a response $H_{eq}(f)$ such that the resulting response of the channel and equalizer fulfils the requirement of a distortion free channel

$$H_{eq}(f)H_c^*(-f) = 1$$

• The channel is time-variant and the filter must be adaptive

Channel response and equalizer response

• The equalizer response has to compensate for the channel response to make the sum equal, i.e. the channel response is «equalized»

Linear Transversal Equalizer (LTE)

- An LTE structure is shown below
- The required length of the filter depends on the variation in channel delay (the length of the channel's impulse response)

Non linear equalizers

• In some cases, non-linear equalizers are suitable, especially when the channel experiences deep nulls

Decision feedback equalizer (DFE)

- The feedforward filter is usually a fractionally spaced equalizer
- The feedback filter is usually a symbol spaced equalizer
- The input of the feedback filter consists of previously detected symbols and the feedback filter subtracts the amount ISI introduced by these symbols

Maximum Likelihood Sequence Estimator (MLSE)

- The channel impulse response is calculated
- A Viterbi algorithm is used to estimate the most likely symbol sequence
- MLSE is an optimum method for removing ISI
 - But the complexity increase exponentially with the length of the channel response

Agenda

- Introduction of fading
 - Effect of fading
- Diversity and types of diversity
- Combining techniques of diversity
- Equalizers
- Exploiting multipath with MIMO
 - Literature:
 - 1. David Gesbert and Jabran Akhtar: «Breaking the Barriers of Shannon's Capacity: An Overview of MIMO Wireless Systems». *Telektronikk*, 98(1), p53-54, 2002.

What is MIMO?

- MIMO: *Multiple input multiple output*
- Given an arbitrary wireless communication system:
 - "A link for which the transmitting end as well as the receiving end is equipped with multiple antenna elements"

- The signals on the transmit antennas and receive antennas are "combined" to improve the quality of the communication (ber and/or bps)
- MIMO systems use space-time processing techniques
 - Time dimension is completed with the spatial dimension

Different gains of multiple antenna systems

• "Smart antenna" gain

• Beamforming to increase the average signal-to-noise (SNR) ratio through focussing energy into desired directions

Spatial diversity gain

• Receiving on multiple antenna elements reduces fading problems. The diversity order is defined by the number of *decorrelated* spatial branches

Spatial multiplexing gain

• A *matrix* channel is created, opening up the possibility of transmitting over several spatial modes of the matrix channel increasing the link throughput at no additional frequency, timer or power expenditure

Multiple antenna fundamentals

Multiple antenna fundamentals

Multiple antenna fundamentals

Multiple antenna fundamentals Spatial multiplexing

49 UNIK 4230 Mobilkommunikasjon - Lecture 4 Combating fading

Multiple antenna fundamentals Transmit diversity

Multiple antenna fundamentals Beamforming

Maximizing diversity with space-time block codes

- Alamouti's scheme:
 - The block of symbols s₀ and s₁ is coded across time and space
 - Normalization factor ensures total energy to be the same the case of one transmitter

$$\mathbf{C} = \frac{1}{\sqrt{2}} \begin{bmatrix} s_0 & -s_1^* \\ s_1 & s_0^* \end{bmatrix}$$

- Reception:
 - The receiver collects the observation, y, over two symbol periods

Spatial multiplexing

- Extending the Space-Time Block Coding
 - Transmitting independent data over different antennas
 - The receiver must un-mix the channel
 - Limited diversity benefit

 $\mathbf{Y} = \mathbf{H}\mathbf{C} + \mathbf{N}$

Summary chapter 5

- Signal variations caused by fading increase the BER
- Random FM caused by Doppler and co-channel interference results in a BER «floor»
 - The BER cannot be improved further by increasing SNR
- Diversity means that multiple copies of the signal, which experience independent fading, are combined.
 - This reduces the need for fading margins
- Spatial, frequency, angular, polarization, time and multipath diversity are different types of diversity
- Selection combining, maximum ratio combining and equal gain combining are different methods for combining the diversity signal.
 - MRC is optimum, but also most complex
- Macro-diversity means that the receivers are spaced with large distances, usually different base stations.
 - Macro-diversity fights long-term fading
- Inter-symbol interference (ISI) cased by frequency-selective fading can be mitigated with channel equalizers
- Multiple antennas MIMO can be used to exploit multipath transmission

Spare slides

Properties of the Linear Transversal Equalizer

- Different optimizing criteria exists to estimate the values of the filter coefficients *c_j*.
- Zero-forcing (ZF) tries to force the ISI to zero.
 - This is not always optimum
 - Can give noise amplification in parts of the bandwidth
- Symbol-spaced equalizer:
 - the unit delay between two coefficients is equal to the symbol length ${\cal T}$
- Fractionally spaced equalizer:
 - The unit delay between two coefficients is less than the symbol length T

How MLSE works

• The Viterbi algorithm finds the sequence s_k through a trellis which minimizes the Euclidean distance between the sequence and an observation:

$$\sum_{k=1}^{K} \left| r_k - s_k \right|^2$$

• Example: *h*=1+0.5*z*-1 (fig: [Lee, 1994]) :

Orthogonal Frequency Division Multiplex (OFDM) (1)

- A fundamental problem in mobile communication is the ISI which occurs when the data rate is high
 - Channel equalizers counteract this, but becomes too complex when they must span many symbol periods
- Another solution is to construct the data stream by using many wave carriers each one having a low data rate
 - This is robust against multipath propagation because each of the carriers have relatively narrow bandwidth, and thereby flat fading
- The highest bandwidth efficiency (bit/s/Hz) is achieved by using overlapping orthogonal carriers

Orthogonal Frequency Division Multiplex (OFDM) (2)

- The individual subcarriers in OFDM can overlap without disturbing each other if the frequencies are chosen to be orthogonal
- This means that during a symbol period, the signal goes through an integer number of cycles.

Orthogonal Frequency Division Multiplex (OFDM) (3)

- Because of its good performance in fading channels, OFDM has gained increased popularity
- It is now chosen for most new mobile and wireless systems with high data rates in fading channels
- Examples:
 - Digital terrestrial broadcast (DVB, DAB)
 - New standards for WLAN
 - IEEE 802.11a, g, n (Wi-Fi)
 - IEEE 802.16 (WiMAX)
 - LTE Long Term Evolution «4G»

