# SENSING ODOUR WITH E-NOSE

The past and future trends of odour detection

**By Christine Thuen** 



#### AGENDA

- Sensors
- Electronic nose
  - What is electronic nose?
  - Application areas
  - Wireless Sensor Networks Based Electronic-nose used for monitoring and improving air quality
  - Challenges and possible solutions
  - Future trends
- Conclusion

#### SENSORS

- Considered as
  - Transducers --> converts a signal or data from one form to another



 Intelligent proactive devices part of a larger system bringing layer of control over human capabilities

### **HUMAN SENSORY SYSTEM**

- Seeing (Camera)
- Hearing (Microphone)
- Tasting (E-tounge)
- Touch (Thermometer)
- Smell (E-nose)



#### GAS DETECTION METHODS

- Different excisting gas detection methods such as
  - Gas chromatography (GC)
  - Mass spectrometry (MS)
  - GC-MS Method
  - Ion mobility spectrometry (IMS)
  - Near-Infrared spectroscopy

#### **ELECTRONIC NOSE**

- First E-nose device made in the 1980s
- A smart instrument designed to detect and distinguish complex odours

# COMPARING THE BIOLOGICAL NOSE TO THE E-NOSE

- E nose is compared to the olfactory system
- Human loungs → pump
- Biological detecting gas → sensors detecting gas
- Olfactory system performs pattern recognition → artificial nose uses a intelligent pattern classification algorithm



# COMPARING THE BIOLOGICAL NOSE TO THE E-NOSE



#### **ELECTRONIC NOSE**

- Typical E-nose device includes
  - a sampling system
  - an array of chemical gas sensors
  - a analog to digital converter (ADC)
  - a computer microprocessor with sample classification method (pattern-classification algorithm)

#### **APPLICATIONS**



### E-NOSE DEVICES

- SensorFreshQ
- Cyranose 320
- JPL Electronic Nose



Cyranose 320



SensorFreshQ



JPL Electronic Nose

# WIRELESS SENSOR NETWORKS BASED ELECTRONIC-NOSE USED FOR MONITORING AND IMPROVING AIR QUALITY

- Using a fuzzy neural network based on RBF algorithm
- Using ZigBee which enables low complexity and ultra low power consumption.



#### CHALLANGES WITH CURRENT E-NOSE

- High cost
- Complexity of signature detection and matching
- To broad range of application area
  - e.g Cyranose 320 used to sniff out explosives, chemicals, food contaminates and even cancers.

#### Possible solutions

 E-Nose that are more targetable at detecting and discriminating a small range of analytes

Printed organic conductors



#### **FUTURE TRENDS**

- Current price of e nose same as in 1998 (from \$5000 – \$100 000)
- Experts predict that within a decade e-noses will cost only tens of dollars

## CONCLUSION

# QUESTIONS?