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Introduction
The Actor model [1] has been adopted by a number of languages as a natural way of describing
distributed systems. The advantages are that it offers high-level system description and that
the operational semantics may be defined in a modular manner. The Actor model is based on
concurrent units communicating by means of message passing. A criticism of message passing
has been that its one-way communication paradigm may lead to complex programming when
there are dependencies among the incoming messages.

The Actor-Based Concurrent Language (ABCL) is a family of programming languages based
on the Actor model [3]. It makes use of futures [2] in order to make the communication more
efficient and convenient. A future is a read-only placeholder for a result that is desirable to
share by several actors. Future identities can be passed around as first class objects. This
model is suitable for modeling of service-oriented systems, and gives rise to efficient interaction,
avoiding active waiting and low-level synchronization primitives such as explicit signaling lock
operations. The notion of promises gives even more flexibility than futures by allowing the
programmer to talk about the result of call even before the call has been made.

One may combine the Actor model and object-orientation using the paradigm of concurrent,
active objects, and using methods rather than messages as the basic communication mecha-
nism [7]. This opens up for two-way communication. This is for instance done by the Creol
language [5] using so-called call labels to talk about calls, implementing method calls and replies
by asynchronous method passing. Creol introduced cooperative scheduling, allowing mechanisms
for suspension and process control. A process may suspend while waiting for a condition or a
return value. For instance await f? makes a process suspend until the reply associated with
label f appears, resulting in passive waiting. One may also make use of the future mechanism
to generalize this setting so that several objects may share the same method result, given as a
future. For instance the ABS language [6] is based on the Creol concurrency model, allowing
the call labels of Creol to be first class, thereby supporting futures.

In this setting the two-way communication mechanism is replaced by a more complex pat-
tern, namely that a method call generates a future object where the result value can be read
by a number of objects, as long as they know the future identifier. Thus for a simple two-way
call, the caller will need to ask or wait for the future. This means that each call has a future
identity, and that the programmer needs to keep track of which future corresponds to which
call. Our experience is that futures are only needed once in a while, and that basic two-way
communication suffices in most cases. Thus the flexibility of futures (and promises) comes at
a cost. Moreover, implementation-wise, garbage collection of futures is non-trivial, and static
analysis of various aspects, such as deadlock, in presence of futures is more difficult. With
futures, even normal calls are more complex due to the overhead of the future mechanism.

∗Work supported by the IoTSec and DiversIoT projects (Norw. Research Council) and SCOTT (EU, JU).



Active Objects with Future-Free Support of Futures Ramezanifarkhani, Karami & Owe

In this paper we consider the setting of active objects and compare a future-less program-
ming paradigm to the programming paradigm of future-based interaction. For the future-less
programming paradigm we choose a core language derived from Creol, but without call labels
nor futures. Comparison of paradigms can be done with respect to several dimensions and
criteria. We will use the fairly obvious criteria given by expressiveness, efficiency, syntactic
complexity, and semantic complexity. Other criteria could also be relevant, such as information
security aspects and tool friendliness.

Future mechanisms
Languages may have explicit or implicit support of futures [4, 2]. Implicit futures support
the “wait by need” principle. However, when considering cooperative scheduling it is essential
that the suspension points are explicit, and we therefore focus on explicit support of futures
in the comparison below. Languages based on explicit futures have (a subset of) the following
mechanisms (providing ABS style syntax):

• creation of a future (f:=o!m(e))
• first class future operations (assignment, parameter passing)
• polling a future, i.e., using an if-statement to check if a future is resolved ( if f? then .. else .. )
• waiting for a future while blocking, i.e., active waiting (x:= get f)
• waiting for a future while suspending, i.e., passive waiting (await f?)

Here f is a future variable, m a method, o an object, e a list of actual parameters, and x a
program variable. A non-blocking version of get, can be done by await f ?; x:= get f, and is
abbreviated await x:= get f. In general, polling may lead to complicated branching structures,
and is often avoided in languages with support of explicit futures.

A high-level, future-less language for active objects
We build on the Creol model for active objects, but avoid call labels (and futures). Object
interaction is done by so-called asynchronous method calls, implemented by asynchronous mes-
sage passing. This means that communication is two-way, passing actual parameters from the
caller to the callee object when a method is called, and passing method return values from the
callee to the caller when the method execution terminates. We include the Creol primitives for
process control and conditional suspension, using the syntax await condition , where condition
is a Boolean condition. The syntax for method calls is as follows:

• x:=o.m(e)[s] for a blocking call where s is done while waiting for the future to be resolved,
and if needed, active waiting happens after s (as in f:=o!m(e); s ; x:= get f, using Creol)

• await x:=o.m(e)[s] for a non-blocking call, where the suspension point is after s (as in
f:=o!m(e); s ; await x:= get f, using Creol/ABS)

• o!m(e), for calls where no return value is needed.

Here [ s ] may be empty as in x:=o.m(e)/await x:=o.m(e), or may include additional calls as in
for instance await x:=o1.m1(e1)[<calculate e2>; await y:=o2.m2(e2)[s]], where the suspension
point is after s, passively waiting for both calls to complete. In this manner, programs with
nested call-get structures can be expressed without futures.

For the comparison we note that the future mechanism involves non-trivial garbage collec-
tion. Even if a future is short-lived, it may be complex to detect when it is no longer needed.
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Comparison
By defining “future” classes supporting the future primitives above, as illustrated below, we
show that our high-level core language is expressive enough to define futures, by means objects
of (one of the) future classes. This means that efficient two-way interaction is directly supported,
without garbage collection and future objects, while futures can be obtained, when needed, by
using future objects. In the former case, efficiency is better than in an implementation using
futures, in the second case it is similar (modulo optimizations). For programs with a majority of
two-way interaction, efficiency is improved by our paradigm. We also note that programming
with two-way interaction is conceptually simpler, since the declaration and usage of future
variables are avoided. This is also beneficial for static analysis, since in static analysis of future
retrieval (get) one typically needs to associate a call statement with each get statement. This
can in general be difficult, and it is less modular when these associations cross class boundaries.
Program reasoning is also more complex in the presence of first class futures [8].

Our language is able to encode futures in a straight forward manner. For instance the ABS
code f:=o!m(e) is imitated by f:= new Fut_m(o,e) in our language, where class Fut_m is a
predefined class, outlined below with initial code, a local method start , and exported methods:

class Fut_m(o,par) {
Bool res:= false; // is the future resolved?
T value; // the value of the future when resolved

{start()} // initial code
Void start(){await value:=o.m(par); res:=true} // see comment below
Bool resolved(){return res} // polling
Bool await_resolved(){await res; return true} // waiting until resolved
T get(){await res; return value} // waiting for the resolved value

}

In start we use await when polling is allowed, then the future object will be able to perform
incoming call requests, and for instance return the appropriate result of polling requests. (The
class parameters should here have the types given by the method m.)

A more detailed comparison will be made in the full paper.
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