Short-range Communication > Whits HART, --Contactless Communication > NFC, RFD

Security in NFC

Short range communication - Bluetooth Smalphone + Eysile + Balty + (Blieforth Drives for evolution - Mobile Communication from 26 -> 36 IS95 (CDMA) -> CDMA 2000 (ho 8/4) 65M -> UMTS VCDMA 90% of marky Bhretooth (E (3-4 years late) in the mobile - medical assessment Stuetooth, ANT+ presultation by Thomas Aasebol

CHARACTERISTICS

- ► To provide flexibility, three unlicensed bands are used depending on location 2.4 GHz, 915 MHz/and 868 MHz.
- Sixteen channels are allocated in the 2.4 GHz band, each channel being 2 MHz wide and requiring 5 MHz of spacing.
- ► The 2.4 GHz band provides up to 250 kbit/s, 915 MHz provides up to 40 kbit/s and 868 l/m/z provides a data rate up to 20 kbit/s.
 - ▶ Throughput is expected to be around 10 to 115.2 kbit/s.
- ▶ Direct-sequence spread spectrum(DSSS) coding is utilized.
 - ▶ In the 868 and 915 MHz bands, binary phase-shift keying (BPSK) is used.
 - ▶ Offset quadrature phase-shift keying (OQPSK) that transmits two bits per symbol is used in the 2.4 GHz band.

Communications

Hintering Gain

Fally loss

Free space loss

Frans mit pomer

Syra (to noise)

Sanshirty = -95 Ms. (VLAN Sins)

- 104 MS GSM Wish bitute

- 104 MS GSM Wish bitute

- 104 MS GSM Wish bitute - multiple radio channels

Standby power 2 MW 20.000 inchase in Receive oprehon 22 MW Power Transmit operation 18 MW (0 dBn)-150MW 20 dBh)

POWER CONSUMPTION

- Power consumption is directly proportional to message frequency.
 - ► Message frequency can be adjusted from 0.5 to 200 Hz.
- Usually runs on coin cell batteries. Expected lifetime is measured in years.

Quick Reference Data		
Message rate	0,5 – 200	Hz
Idle current consumption, no communications	2	μA
Peak current consumption RX mode	22	mA
Peak current consumption TX @ 0 dBm	16	mA
Average system current consumption per TX message 1	39,4	μA
Average system current consumption per RX message 1	43,1	μА
Max # of simultaneous connections 2	>65000	connections
Maximum sustained transfer rate (all data – no overhead) ³	20	kbps
CR2032 Battery life in typical sensor application ⁴	15	years

- 18 bytes payload data no additional overhead required. Message interval of 2s
- Using shared channel network
- ³ Transfer rates refers to data rate of the end application's message payload
- ⁴ Message interval of 2s, 1 hour/day usage (Unidirectional communication)

- In data corruption transmit valid frequency of data spectrum at correct time.
- corruption power is bigger than sender power => detectable.
- In data insertion: only, inserted data transmitted before the original device starts with the answer
- data streams overlap => data corruption

Smart poster URL spoofing

```
Title: Bank of Germany
URL: https://www.bankofgermany.de

(a) Original Smart Poster

Title: Bank of Germany\rhttps://www.
bankofgermany.de\r\r\r\r\r.
URL: http://www.attacker.com

(b) Malicious Smart Poster

Figure 1. URL Spoofing
```

• Possible countermeasure: mark the URL in special way

RF signal eavesdropping

- RF Signal eavesdropping:
- How close an attacker need to be, based on many things:
 RF characteristics of sender device, attacker antenna, attack receiver, attacker signal RF decoder, power send by NFC device, attacker location.
- In general, sending device in active mode => 10m, when it in passive mode => 1 m.
- Possible countermeasure: establish a secure channel.

What is NFC • NFC operational mode : Read/write mode: active device links up with another device to read information (smart mobile - NFC tag) > Peer-to-peer mode: both devices switch between active (sending data), and passive (receiving data). > Card emulation: using NFC device as credit card.