
PROTEGE API OWL API JENA API

extension of the OWL API

Protégé is also an open-source, Java
tool that provides an extensible

architecture for the creation of

customized knowledge-based

applications.

The OWL API bypasses RDF to

provide services based on OWL.

It is not RDF-friendly and you

won't be applying SPARQL

queries any time soon.

Most Flexible one

as it covers all of RDF and

therefore can be used to create

OWL constructs, axioms and run

inferences.

the Protege-OWL API does

not sit on top of Jena. It only

uses Jena

for parsing and provides a Jena

"view" (implementation of the

Graph

interface so that some Jena

services can be exploited for

Protege as

well).

But you are right - the Protege-

OWL API is good for

newcomers, assuming

they understand the layering on

top of the core Protege API: no

methods

that are overloaded as deprecated

should be used.

The OWL API is a Java API and

reference implmentation for

creating, manipulating and

serialising OWL Ontologies. The

latest version of the API is

focused towards OWL 2

The OWL API is open source

and is available under either the

LGPL or Apache Licenses

The OWL API includes the

following components:

 An API for OWL 2 and

an efficient in-memory

reference implementation

 RDF/XML parser and

writer

 OWL/XML parser and

writer

 OWL Functional Syntax

parser and writer

 Turtle parser and writer

 KRSS parser

 OBO Flat file format

parser

 Reasoner interfaces for

working with reasoners

such as FaCT++, HermiT,

Pellet and Racer

. Jena is a general purpose RDF

API (that means RDF data, not

just ontologies) plus an OWL

API, plus SPARQL processor,

reasoning

support, pluggable database

backends and various assorted

external tools

like the Eyeball data validator

and Joseki server. A number of

groups

have built interesting tools that

work with Jena such as the

D2RQ

database mapper.

Jena is one of the most widely

used Java APIs for RDF and

OWL, providing services for

model representation, parsing,

database persistence, querying

and some visualization tools.

Protégé-OWL has always had a

close relationship with Jena. The

Jena ARP parser is still used in

the Protégé-OWL parser, and

various other services such as

species validation and datatype

handling have been reused from

Jena. It was furthermore possible

to convert a Protégé OWLModel

into a Jena OntModel, to get a

static snapshot of the model at

run time. This model, however

had to be rebuilt after each

change in the model.

PROTEGE API OWL API Jena API

http://www.w3.org/2007/OWL/
http://www.hpl.hp.com/semweb/jena.htm

Complexity/easy to use

 Like other Java APIs, the

libraries are needed to be

imported in the source

code of the application.

Provided with the standard

Protege installation.

 Protege API is the most

complete, and has good

compatibility with

Protege

 Protege API does not

need any other

installations

 Protege API includes

most of the Jena

properties

Complexity/easy to use

 higher level of

abstraction

 loading ontologies is

easy, running SWRL

more complex

 loading ontologies,

saving ontologies,

entities, deleting Entities

 straight forward java

programming

Complexity/easy to use

 easy/reasonable to use

 write both java programs

and also use command-

line inputs

The Protégé Java API lets us

control the ontology’s internal

representation. For example, we

can create new classes and

instances programmatically.

Although we can use this API to

manage all aspects of the Protégé

internal representation,

doing so is complicated because

of the API’s flexible but low-

level nature.

The tool has no performance

engine, so we must use proce-

dural Java code to access the

API.

Reasoning, support for SWRL

 own examples on how to

create an ontology andd

some rules

 interaction with reasoning

 Two reasoner

implementations

available: Pellet and

FaCT++.

 Pellet should support

SWRL rules

 UNIK uses OWL-API

 OWL-API most probably

easiest to use

