
UNIK-4710 FINAL PRESENTATION

José María Moreno Retamero

FIRST OF ALL

At the beginning I started to implement a web
application with html,php and jsp but I

realized that it was hard for me because all
the programming languages that involves:

Java,html,php,jsp,OWL API libraries…

So i decided to drop out that project, I can’t
afford that because I’m not really a good

programmer, and start a new one using just
Java.

FIRST OF ALL

So I created a window based Java application
which is based on an ontology created on

Protégé, then we connect the ontology to my
Java programming interface (Eclipse) to work
directly with the ontology. We can see, edit

and remove classes, individuals and
properties.

BEFORE TO START

I missed some time on my previous web
application, I struggled with Protégé 4.3,

programming in Java and took me a long time the
“how to” of the entire new project; but finally I

got so much knowledge and now I really
understand what the ontology's are made for and

how to work with them.
Despite of this my application doesn’t have all

the functionalities that I would like to implement
but have the basic ones to understand and work

with ontology's

PROGRAMING WITH A ONTOLOGY

I would like to talk about the vital importance
of the reasoner when you are programming
with an ontology, because it takes me a bit

time of realized of that fact.

THE REASONER

When I started to implement my application I
use some basic examples from the OWL API
help without using reasoner. At this point I

started to view things coming out of my
ontology and I get excited. Showing

individuals or classes like that:

THE REASONER

What the hell is that long string(IRI)? I don’t
need it, let’s start to cut it.

THE REASONER

As my project progressed my code was longer
and complicated and with more problems; I
went crazy and I’m started to think that was

not the right way to connect with the
ontology. We can say at this point that I began

to “reason”

THE REASONER

Using the reasoner we can see how much
simplifies the code for the same function

And it gets just the name!!The long string is
gone!!

STORY OF MY PROJECT IN A PICTURE

BEFORE TO START

I would like to thank my classmates:

 Martin who teach me some tips on Protégé
and how to start with my application.

Javier who told me how to use the OWL API
libraries properly

CLASSES

The ontology is about an university and the
classes and subclasses seem like that

Student Teacher

Person

Master Student Bachelor student

Room

Classroom Computerroom

CLASSES

The ontology is about an university and the
classes and subclasses seem like that

Resources

Login Course resources

Room resources Course

Master Course Bachelor Course

Presentation Exam Assignment

CONNECTION OF THE CLASSES
Red arrows are subclasses

Blue arrows are connections between classes

Resources

Room

Student Teacher

Person

Course

Login

RESTRICTIONS

•On the courses are min 3 Students

•Courses are taugh in min 1 Room

•Person study/teach min 1 Course

•Person have just 1 Login

•Course could have min 1 C_Resources

•Room could have min 1 R_Resources

GOING INSIDE OF ONTOLOGY

Resources

Room

Student Teacher

Person

Course

Login

Properties:

Has_login

Study

Taugh

Are_taken

Equiped with

Has_Cresource

Has_login

Study Taugh

Are_taken

Equiped with

Has_Cresource

Symmetric property

WHAT THE APPLICATION CAN AND
CANNOT DO

IMPLEMENTED

•Students and teachers
login/logout

•A student can see their
registered courses, what teacher

teaching the course, in which
room will taught and room

resources

•A teacher can see their
registered courses, students

registered in that course, in which
room will taught and room

resources

•Admin can create and delete
students and teachers.

NOT IMPLEMENTED

•Alerts

•Create rooms, resources and
courses.

GOING INSIDE THE APPLICATION

Now, we are going to see what functionalities
the application implement and what not,

through windows captures.

CONNECTION WITH THE ONTOLOGY

For connect with the ontology I created the function
OntologyConnector:

Don’t forget to include the OWL API libraries, Pellet
libraries, reasoner and of course, copy your ontology

to the root folder of your application

LOGIN

The application implements Login of students,
teachers and one administrator and check
that the user exists and if the password is

correct.

Login failed

LOGIN

Subclasses of class person

Comparing individuals of selected person class
And individuals of class Login

Login function

STUDENT

Alerts are not implemented

Clicking on the registered courses of the student
will show information about the course

Logout

The information showed

TEACHER

Alerts and resources are not implemented

Clicking on the registered courses of the teacher
will show information about the course

The information showed

ADMIN

Create or delete courses and rooms are not available

We can create and remove students and teachers
from the ontology. The visual interface is similar
for both two.

Main window of user admin appears in blank

Admin user can login as a teacher and have his own user and password

CREATING STUDENT/TEACHER

Combo box for choose type of student (this is deactivated
When you are registering a new teacher)

Menu for choose our option

Clicking accept will create a new individual

Admin user can login as a teacher and have his own user and password

CREATING STUDENT/TEACHER

Welcome message

The other controls disappear

Available courses

After create a user we need to assign him/her the courses

Register to the selected course

REMOVING STUDENT/TEACHER

Existing teachers
Note that the admin user doesn’t appear

Delete the selected teacher

THE END

 Thanks for your attention

