
UNIVERSITY OF OSLO
Department of Informatics

A Semantic
Approach for
context-aware
Authorization in
Enterprise
Systems

Master thesis

Martin Folkeseth

Autumn 2013

A Semantic Approach for context-aware
Authorization in Enterprise Systems

Martin Folkeseth

Autumn 2013

ii

Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor
Josef Noll, for his guidance throughout this thesis, for including me in his
work and for encouraging me to continuously improve my skills. Josef has
much experience which he is glad to share, and is also a person who takes
student opinions seriously, and for that I am grateful.

I would also like to thank my fellow students for their opinions,
feedback and good times both on- and off campus.

Finally, I would like to thank my family, friends and my good colleagues
at Netlight for all their support and good times as well.

iii

iv

Abstract

This thesis deals with the privacy of the user profile in a context-aware
situation. The mobile phone has become an identifier in the digital world,
and can help us to get services tailored towards our needs in the given
situation. Such a situation may be a service offer at the airport, train
station, or any other locations. The approach in this thesis is to implement
the core concept of such context-aware service provisioning for a travel
scenario. The key issues of our approach is the business applicability to an
enterprise environment, as well as establishing access to the user profile
based on trust and link the user profile to context-aware services. We
will use the context of the user and the situation of the context as the
attributes contributing to establishing trust value, and implement service
provisioning using enterprise frameworks and Microsoft OData. We will
then review the approach and the implementation and compare it to other
solutions on the market.

v

vi

List of Abbreviations

PA Profile Attribute

SA Security Attribute

TA Trust Attribute

TAV Trust Attribute Value

CA Context Attribute

CAV Context Attribute Value

ETA Evaluated Trust Attribute

TL Trust Level

vii

viii

Contents

1 Introduction and technology evaluation 1
1.1 Problem statement . 1
1.2 Goals . 2
1.3 Approach . 2
1.4 Structure of thesis . 3

2 Expanding problem statement 5
2.1 Introduction . 5
2.2 Scenario . 5
2.3 Key requirements . 9
2.4 High level system view . 10
2.5 Access Control and data structure concept overview 11

2.5.1 Authentication . 12
2.5.2 Authorization . 13
2.5.3 Role-Based Access Control (RBAC) 13
2.5.4 Attribute-Based Access Control (ABAC) 13
2.5.5 Context-Aware Access Control (CAAC) 14
2.5.6 Context information 14
2.5.7 Semantic Web . 15
2.5.8 Linked data . 16

2.6 Technologies and tools . 16
2.6.1 Platform . 16
2.6.2 OData . 17
2.6.3 Semantic web technologies 19
2.6.4 GData . 20
2.6.5 XML . 20
2.6.6 Policy languages . 20

3 Authorization models 23
3.1 Introduction . 23
3.2 State-of-the-art authorization models 23

4 Technology selection 29
4.1 Introduction . 29
4.2 Selection of key technologies 29

4.2.1 Integrated Development Environment 29
4.2.2 Web server . 29

ix

4.2.3 Data structure . 30
4.2.4 Data storage . 31
4.2.5 Policy language . 31

4.3 Selection of context used in authorization 32

5 Implementation description 35
5.1 System description . 35

5.1.1 Scenario . 35
5.1.2 On-the-go . 37

5.2 Use case description . 39
5.2.1 Selection of use cases 48

5.3 Scenario simulation . 49
5.3.1 User experience . 49
5.3.2 Profile structure and security 50
5.3.3 Calculating trust level 54
5.3.4 Simulation data . 56
5.3.5 Expected results . 59

6 Implementing access control 63
6.1 Introduction . 63
6.2 Changes along the implementation 63

6.2.1 Policy and policy language 64
6.2.2 Implementing a cloud service using OData 65

6.3 Implementation . 68
6.3.1 Send service request 69
6.3.2 Evaluate trust . 71
6.3.3 Authorize access to the user profile 74
6.3.4 Respond with authorized user profile 78
6.3.5 Implementation result 81

7 Evaluation 83
7.1 Approach . 83
7.2 Implementation . 84

7.2.1 Security . 85
7.2.2 Privacy . 85
7.2.3 Conclusion . 86

7.3 Technologies . 86

8 Conclusions and future work 89
8.1 Conclusions . 90
8.2 Recommendations . 91

8.2.1 Lessons learned . 91
8.2.2 Inter working amongst semantic systems 91

8.3 Experience with OData implementations 93
8.4 Open issues and future work 93

8.4.1 Usability . 93
8.4.2 Security and data integrity 94
8.4.3 Reasoning . 94

x

List of Figures

2.1 A vizual example of the process where a user manages
his/hers profile information 7

2.2 Shows the process for requesting a personalized service for
a user . 8

2.3 High level system overview with the five main components
we consider bein the main participants in the scenario 10

2.4 Example of OData response in AtomPub format 18

3.1 Overview of the MOSQUITO Context-Aware Access Control
framework . 24

3.2 Model for OWL-based policy specification fod ad-hoc col-
laboration between mobile devices 26

3.3 Access-Control policy adaption for critical situations 27

5.1 Detailed system description for scenario upon profile man-
agement and getting personalized services 36

5.2 Flowchart home scenario where users manage their user
profile . 40

5.3 Flowchart service provider where the users mobile phone
requests personalized services and authorizing access to
their user profile by providing contextual information 44

5.4 Flowchart evaluating access control in the cloud service . . . 47
5.5 Generalized example of a semantically structured user profile 50
5.6 Example of a users PA attached with a SA 51
5.7 Contextual information that will be attached to the request-

ing services request . 53
5.8 Example of semantically structured trust attributes for a user 53
5.9 Snipping of Bob’s trust relationship to Norway and Sweden 54
5.10 Figure showing how the users trust is traversed upon when

getting relevant trust attributes based on context information 55
5.11 Figure showing the process of how the user profile is

traversed upon when authorizing access 56
5.12 Contextual information that will be used in the simulation of

this thesis . 57
5.13 Bob’s profile that will be used in the simulation of this thesis 57
5.14 Bob’s trust that will be used in the simulation of this thesis . 58
5.15 Cathrine’s profile that will be used in the simulation of this

thesis . 58

xi

5.16 Cathrine’s trust that will be used in the simulation of this thesis 59
5.17 Bob’s relevant trust attributes to the context information that

is sent from the requesting service in the simulation of this
thesis . 60

5.18 Cathrines’s relevant trust attributes to the context informa-
tion that is sent from the requesting service in the simulation
of this thesis . 60

5.19 Information that is sent back to the requesting service of
Bob’s user profile in the simulation of this thesis 61

5.20 Information that is sent back to the requesting service of
Cathrine’s user profile in the simulation of this thesis 61

6.1 Flow chart for process when service provider request infor-
mation about users food preferences and receives part of
user profile . 68

6.2 Flow chart shows how the implemented framework builds a
request for requesting information about users food prefer-
ences . 69

6.3 How the request is built up by dividing a URI into cloud
address and service address 69

6.4 Request header with context information for requesting
Cathrine’s food preferences 71

6.5 Flow diagram showing where in the request process trust
level is calculated . 72

6.6 Entity model of how trust is structured in the cloud 73
6.7 Flow diagram showing processing request and authorizing

access to the user profile . 74
6.8 Entity model of how the profile is structured in the cloud . . 75
6.9 Flow diagram when a reequesting service receives a re-

sponse with authorized parts of a user profile 79
6.10 The cloud for information about the food in food preference

5, which is Cathrine’s food preference of sushi 80

8.1 Flow diagram of how RDF can be converted into OData . . . 92
8.2 Snipping from configuration file that describes how to

convert RDF into OData . 92

xii

Chapter 1

Introduction and technology
evaluation

1.1 Problem statement

Most people have a mobile phone, or some kind of digital device on their
person at all times. With mobile computing becoming more important in
our lives every day, it has also become an important part of our security. In
one day, one might visit the bank, Facebook, Email, cloud storage and train
time tables, just to mention a few. The mobile phone has in many ways
become the identifier in our digital daily lives.

The mobile phone contains information about location, information
about availability, travel plans, as well as activity and calendar. In order
to create personalized services, the functionality may be enhanced by user
preferences. To keep all information the phone and make them available
on the phone for service providers, will require an huge amount of data
transfer, reduce battery capacity, delay in service capability, as well as lack
of backup of the information when the phone is lost or experience technical
faults. Current trends in the industry shows that an approach where a
user profile is created for each application is turned into a more common
approach where only relevant parts of that profile are provided to a service
provider for his/hers service or application.

The structure of the user profile and how to store it has not been
standardized yet, but we assume that semantic technologies will help us to
get structured representation of these data. Contextual information, being
time and location, as well as activity and temperature, are refereed in many
research papers as being the contributer to context-aware profiling, but
little ha been done on the contextual user profile.

By combining all the different application-specific user profile into one
user profile, the challenge of only providing relevant information to the
service in charge, is one of the dominating challenges of the future. This
information should be context sensitive and should reflect the demand for
privacy of the user. An example of such context-aware profile is where a
user comes to a certain location and he/she wants information on service
offers. If the users are completely unknown in the place, they might only

1

be interested in getting recommendations for the further on travel, being
the way to the next airport gate or bus stop, where as the users feel more
comfortable, he might agree to get information on sushi breakfast.

The main challenges here is to build the users trust for context-aware
situations and how to link this trust settings to the access of the user
profile. In our approach we called up an attribute-based authorization,
where the attributes contribute to access to certain parts of the user profile.
One of the main challenges that we are addressing is to bring this into an
enterprise service environment. Most of the enterprises user the Microsoft
framework, thus a major point of this thesis is to apply the Microsoft
framework to context-aware personalized provision.

1.2 Goals

The goal of this thesis is to address the challenges in the following areas:

• Presenting a scenario of context-aware personalized profile.

• Define a functional architecture, which takes into consideration pri-
vacy demands of the user and the context-aware service provisioning
offers.

• Evaluate the enterprise framework for applicability to this functional
architecture.

• Implement user profile, trust architecture, and context-aware autho-
rization into an enterprise frameworks.

• Evaluate the approach of using an enterprise framework for context-
aware and enterprise frameworks.

1.3 Approach

The approach follows the goal description, being described in chapter
before. Where each and every bullet of the goals is tackled on its own. A
scenario will be established in order to exemplify the challenges of context-
aware profiling. The functional architecture is set up combining a scenario
and a non-technical implementation description, taking into account a
distributed computer profile and access to that user profile. Security and
privacy is taking into account through the review of the state-of-the-art
authorization models, leading to a context-aware authorization model for
semantically structured data. Our approach of using enterprise framework,
thus the state-of-the-art review and suggests framework components to
implement the functional architecture. Through that we will be able
to communicate user preferences by receiving context information and
respond with service offers that are structured semantically.

The implementation of the core components will provide us with an
answer to what degree the framework is able to supply fully working

2

authorization implementation. Based on the experience of this work, we
will the conclude with recommendations on to which extend the enterprise
framework can be used for context-aware authorization and personalized
user provisioning.

1.4 Structure of thesis

Following the approaches described below, the thesis is described as fol-
lows; Chapter 2 creates an overview of the thesis, by introducing the sce-
nario, establishing key requirements, as well as analyzing possible tech-
nologies and concepts for the implementation. Chapter 3 reflects on
other researchers proposal for state-of-the-art authorization/authentica-
tion models, with main focus on context-awareness. Chapter 4 will ex-
pand expand the scenario to a detail description and make a selection of
which parts of the scenario to be implemented, as well as present a imple-
mentation simulation with simulation data and expected results. Chapter
5 makes a selection of technologies to be used to create our framework for
context-aware authorization for semantically structured data. Chapter 6
describes our implemented framework in detail. In chapter 7 we evaluate
our approach of the thesis and implementation. Finally, chapter 8 will con-
clude on our results for creating a enterprise framework for context-aware
and personalized services. Chapter 8 will also present recommendations
for future work and provide additional information of how OData can be
used in practice, in other scenarios.

3

4

Chapter 2

Expanding problem statement

2.1 Introduction

In this thesis we wish to combine context information and user profile
information in order to create a context-aware user profile, and to provide
location-aware services to the user. In order to have a privacy-aware
solution, our basic assumption is that not all of the information of the
user is going to be in the cloud, but some of the confidential information
will be located on the mobile device. In order to have such distributed
profile information, we need to look at available security mechanisms. Our
main focus for such context-aware peronized information is on the access
control. We aim at using context-aware access control authorization model
for semantically structured data, will explain this in more detail later.

In this chapter we will expand the problem statement and will start
by creating a detailed scenario in section 2.2, where we create a more
detailed description of the user experience. In section 2.4 we will present
the different components we view as essential in such a system. From
the scenario and system overview we will reflect on what we see as key
requirements, which will be covered in 2.3. Finally we will present concepts
and technologies that, to the best of our knowledge, can be used to fullfill
our scenario and key requirements.

In order to provide a broad understanding of the topic and the
related technology aspects, we will start will a brief presentation of
technologies and concepts that might be relevant. We will then establish
key requirements and identify the core technologies wich we are going to
use in our solution. These requirements and technologies will be described
in section 2.5 and 2.6.

2.2 Scenario

In ordet to give an overview of the context-aware user provisioning we will
create scenario, indicating the user experience when combining his/hers
profile data with context information.

Our starting point of providing personalized services is the assumption
that the user will have a user profile, typically in the cloud. Typical

5

information in this profile is information the user has stored to help the
system to present information to the user that is considered relevant, such
as personal preferences, travel schedule etc. Updates of the user profile are
seen either through a direct interaction with the user or through automated
algorithms or through recording user reactions to situation-aware context.

When a user walks into an arbitrary airport, he/she may want
information relevant to their current situation. This person may have for
instance arrived by plane or public transport, in other words he may be
going to a hotel/home or on a flight. Our expectation is that the TV’s,
which are located throughout the airport, will not only display generic
information, but also information being relevant for the specific user in the
vicinity. This scenario assumes that users carry their mobile device at all
times, which contains, or has the ability to obtain, contextual information.
Such information is typically the UserId, time and location, but can also
be information such as temperature, weather condition, the users travel
plan or its further on destination. The phone will automatically connect
to TVs, carrying a local hotspot, throughout the airport and send the
context information to this hotspot. The backend system of the hotspod
will then combine context information from the users phone, context
information from itself to create a service request to the cloud, requesting
access for parts of that users profile, which is relevant to the users current
action. If for instance the user has sufficient time to eat before he/she can
travel furhter, the local food service may ask the cloud for the users food
preferences, relevant for restaurants within a geographical distance. The
users food preferences, or other information in the users profile, such as
information that may be used for payment or social networks, is protected
by a security policy, specified by the user itself or agents acting on the
users behalf. Access to the specific parts of the users profile needs to be
authorized by the cloud for the requesting serivce to be able to retreive this
information. Based on the users information retreived by the requesting
service, available service offers and other open data public information,
the TV-screen will then create personalized information to the users.

In our situation, an example may be provided for a user called Bob,
arriving at Gardermoen Airport and are later on going to Los Angeles.
There has been some flight delays, and Bob has got time to spare. For
this example we will assume that Bob would like to be provided with
information on how he may use his spare time, based on his personal
preferences. But before Bob can be provided with useful information,
there has to be some information about him in the cloud. Therefore, we
have sub-divided Bob’s scenario into two parts, where the first part is
profile management, and the second part is the interaction with services
surrounded by Bob. Both of these parts consists of several steps which
we will cover in the following lists, and will be followed by a figure for
graphical representation. We will start with profile management, assuming
that Bob has access to his user profile via a front end, i.e mobile app or web
site.

1. Bob accesses his user profile.

6

2. The front end fetches Bob’s user profile from the cloud.

3. He creates a new attribute.

4. He attaches a policy to this attribute.

5. He saves the attribute, and the front end will update the profile in the
cloud.

Figure 2.1: A vizual example of the process where a user manages his/hers
profile information

In this figure we have chosen a stand-alone front-end to make it clear
that there are several options available. The front-end can be an own web
server, mobile app, part of the cloud itself or others.

When Bob arrives at Gardermoen Airport, the system will interact by
following the below steps. We assume that his phone is within reach of a
hotspot and the phone is ready to discover services.

1. His mobile phone detects a hotspot, which is locally attached to a TV.

2. The phone connects to the hotspot.

3. The phone gathers contextual information from it’s sensors.

4. The phone sends the context information to the hotspot.

5. The hotspot receives context information from the phone.

6. The hotspot gathers context information from it’s sensors.

7. The hotspot sends the phones and it’s own context information to the
service provider, or backend system.

8. The service provider receives the context information from the
hotspot.

7

9. The service provider constructs a request, containing a query for the
current users profile information and the context information.

10. The service provider sends the constructed request to the cloud,
which contains the user profile information.

11. The cloud fetches the user profile.

12. The cloud authorizes access to the relevant information in the users
profile, based on context information from the request.

13. The cloud constructs a response message, containing authorized
parts of the users profile.

14. The cloud sends the response to the service provider.

15. The service provider receives the response from the cloud.

16. The service provider establishes contact with other public data stores.

17. The service provider fetches information from these public data
stores based on what information it knows about the user, context
and profile.

18. The service provider creates a response message to the hotspot,
containing suggested activities for the user.

19. The hotspot publishes the suggested activity to the TV for the user to
view.

Figure 2.2: Shows the process for requesting a personalized service for a
user

Ultimately, the system will consider the users time table, like how much
time does he have before the flight leaves, has he already walked past the

8

security checkpoint, where is he located, etc. The system might also like
consider what the users preferences are, like what kind of food does this
person like, does he like shopping, is he looking for something in particular,
and last but not least, what is this user not interested in.

2.3 Key requirements

In this section we will make a list of what we view as the key requirements
based on the scenario. Like we did in the previous section, we have divided
the scenario in two parts, the profile management part, followed by the
interaction part, from our example, where Bob is at the airport. We will
create a corresponding list to the above section steps and describe our view
of requirements attached to that particular step. We will start with the
profile management part.

1 A front end with a form of authentication, authorization and
registration. We will also need a place to store the user profile.

2 The ability to communicate between services and the cloud, depend-
ing on implementation.

3 The ability to manage user profile from front-end in point 1.

4 The ability to create policies to restrict access to the users profile
information.

5 View point 2.

Following is the key requirements for the interaction part:

1 Discovery for mobile devices.

2 Authentication certificate so that the mobile phone will be able to
authenticate through the hotspot.

3 Mobile context sensors like GPS, clock, calendar and access other
internal or external resources such as travel schedule.

4-5 Ability to establish communications between devices and trust.

6 Context sensors like described in 2.

7-11 Ability to establish communications between devices, like 4-5.

12 Security policies for user data and context-aware authorization.

13 The ability to create custom messages between services.

14-15 View point 4-5.

16-17 Ability to establish contact with external open data stores.

18 The ability to do automatic reasoning on user information.

9

19 The ability to publish graphical information on a TV-screen.

From the above lists there are many aspects to consider. As we stated
in our problem statement, our main focus will be context-aware access
control, where we focus on authorization. Considering this, we have
selected the most important part of such a scenario in this thesis to be the
context and user profile exchange between services and the cloud.

2.4 High level system view

Based on the key requirements resulting from the user scenario, we will
now suggest the high-level view of our context-aware service provisioning
system.

In this section we will evaluate the scenario and create an overview
of a suggested system and its components. In Figure 2.3 we present

Figure 2.3: High level system overview with the five main components we
consider bein the main participants in the scenario

our suggested system. It has four main components: User’s mobile device
Profile management, TV communication service, Service provider and the Cloud.
These components are structured hierarchically in the order of how they
communicate, meaning that if a user walks into the airport, the mobile
phone connects to the TV hotspot via the TV communication service, which
again forwards the request to a service depending on the users action, i.e.
food service, which sends a request to the cloud.

The user’s mobile device is the device acting on the users behalf,
meaning that it is the users mobile phone that actually interacts with the
system, but it is the user who moves between locations for the mobile
device to be able to discover hotspots. The user is also the one who is in

10

charge of updating their profile in the cloud by interacting with the phone
or other parties, such as a web site. The profile can also be updated by other
agents or reasoning algorithms acting on the users behalf.

The profile management is the service used by the user to update
his/hers profile. Depending on the implementation of the profile service,
it can be present in the cloud or locally on the mobile phone. The front end
part of the profile service is the user interface the person interacts with.
The front end provides simple authentication and authorization in form of
a username and password, or other mechanisms for the user to be able to
access their profile. When a user wants to make changes to his/hers profile,
the profile management exchanges information with the cloud to make the
update.

TV communication service is the service that the users phone detects
and interacts with when the phone is within range of the TV’s local hotspot.
It is used as the communicator between the users mobile device and the
service the device want to use, depending on the users context. This service
is also used to display relevant information on the TV screen onse a service
has retrieved information from the users profile in the cloud.

The service provider layer of the model consists of available services
the user can use. This is the component that requests information from
the users profile based on the context, and exchanges information with
other open data stores to be able to evaluate what information that may
be relevant for the user in the current context.

The cloud is the main component is the most important part of the
system. This component is in charge of storing and updating the user
profiles and communication with other components, such as the profile
management and services. When these services wants access to these user
profiles, every request will be evaluated in respect to the policies users has
attached to their information.

2.5 Access Control and data structure concept overview

To create a system where users can move between locations and the system
can securely retrieve information from the user profile, we not only need
components. We also need concepts for these components to use. In this
section we will touch on different kinds of concepts. For our vision of
implementation, not all of these concepts will be put to use, but will be
mentioned in order to create as broad understanding of them as possible,
and to be able to distinguish them from others. Our focus is on the security
aspects of the service, thus we will focus on authentication, authorization,
context information, as well as related access controls, being Role-Based
Access, Attribute-Based Access or Context-Aware Based Access. We will
then conclude the section with a short introduction to the Semantic Web
and Linked Data, which we see as the two most promising approaches to
generate the Context-Aware personalized services.

11

2.5.1 Authentication

Authentication is the process of identifying an individual. This is to ensure
that the individual is who he/she claims to be, and is usually done with
a username and password, but may also include third-party verification
such as SMS, key generators and other methods. This is usually called
third-party authentication. There are several other options to username
and password, such as smart card and biometric authentication.

We can divide authentication methods into two categories strong
authentication and weak authentication. Weak authentication is usually
regular username and password, or just password, usually referred to as
something you know1. However, passwords can also be divided into weak
and strong password. Weak passwords are usually where we can choose
our password freely without any patter restrictions, though it is becoming
more and more common to use password complexity requirements 2. The
most common complexity requirement is by having a password which is
7 characters long and consist of upper- and lowercase letters, digits and
alphanumeric characters.

Third-party authentication is usually associated with strong authenti-
cation. In recent years, more services are implementing this kinds of secu-
rity, like Google, Microsoft, Blizzard entertainment, Citrix and BankID. The
third-party itself can be you, something you are, biometrics, or something you
have. A device third party can be a E-mail, SMS, security dongle or other
types of One Time Password (OTP) tokens3, where as biometrics can be fa-
cial recognition, fingerprint or eye-scanner. Even though biometrics is easy
to use and can seem high-tech, devices are more often used with high se-
curity because biometrics has more faults, like bad algorithms resulting in
authentication even if this is not the case, but when you loose your device,
you will immediately know that there can be a security breach. There are
also several other actions of security one can use to provide better security,
companies often use address limitation, which means you will have to be
within the company’s network in order to be able to access data or use it’s
services. In general, by providing several steps for authentication, leads to
better security.

When we talk about better security, there is also the argument of
usability. We will not dig deep into this topic, but rather mention that this
also needs consideration. If there is too much security, there will usually be
lower usability. One action that has been frequently more used in order
to solve such problems is Single-Sign On (SSO)4. To put it simple, SSO
is a method of access control when upon authentication to a centralized
authentications server, the user receives a security token which can be used
to access other services attached to that authentication server.

1http:/ /www.novell.com/ documentation/ nmas31 /?page=/ documentation/
nmas31/ admin/ data/ a53s8fw.html, accessed October 2013

2http://technet.microsoft.com/en-us/library/cc786468(v=ws.10).aspx
3http://www.networkworld.com/newsletters/2007/0326id2.html, accessed October

2013
4http://en.wikipedia.org/wiki/Single_sign-on, accessed October 2013

12

In this thesis we will assume that there has been trust established
between all service. This is a concept that is used so that services can
communicate freely. This does not mean that they are free to impact each
other as they see fit however. This is where authorization comes in, and
which will be covered in the next section.

2.5.2 Authorization

Authorization follows after the procedure of authentication. This is
the function of specifying how much access the user has to a specific
resource. To be clear, Authentication verifies the users identity, where as
authorization determines what kind of access or how much access we have
to the resource. These resources can be anything, a web page, folder,
even physical access to a part of a building. Through the process of
authentication and authorization, the system may then access parts of
the users profile. Following we present the three main categories of of
authorization, namely Role-Based Access Control, Attribute-Based Access
Control and Context-Aware Access Control.

2.5.3 Role-Based Access Control (RBAC)

Role Based Access Control (RBAC) defines access control by using a set of
roles to determine access to a specific resource[23]. This is a widely used
method of access control. A simple but yet useful example is a blog site.
Here the viewers of the blog can be categorized as user or guest, but the
editor of the blog can be categorized as a administrator or writer, where the
administrator has write privileges and the user has read privileges. Such
Role-Based access is a very static model and does not provide any grains
of access control, which makes it harder to create more specialized security.
This may also lead to scenarios where users may get more access than they
actually need, because there may not exist a role for their purpose.

2.5.4 Attribute-Based Access Control (ABAC)

Attribute Based Access Control (ABAC) defines access control by the use
of policies which combines attributes together [23]. Here we will use the
terminology of subject and resource. When a subject wants to gain access
to a resource or set of resources, the policy attached to that specific resource
has requirements. An example of a subject can be a user, and application or
a process, and a resource can be a web service, data structure or a system
component, such as a folder. Policies can be defined as follows:

canaccess(subject, resource)← (UserID(subject) = ResourceOwner(resource))

The above ABAC policy states that a user can only access the specified
resource if the user is the owner of the resource. Attribute Based Access
Control can also be applied to Role Based Access Control with correctly
constructed policies:

13

can_access(subject, resource)← (Role(subject) =′ Manager′)

∧(Name(resource) =′ ApprovePurchase′)

As shown in this example, if the user is a Manager he/she can access the
ApprovePurchase web service. While policies in these examples are used
to define access to a certain resource, where their meaning can be extended
in defining complex relations of services in certain context being allowed
to access specific parts of the user profile. In our case Bob is a restrictive
person, so he will only give access to his profile where he is comfortable,
example giving his home country, Norway.

2.5.5 Context-Aware Access Control (CAAC)

From our understanding, Context-Aware Access Control has several
names, Context-Sensitive Access Control (CSAC)[22][19] and Context-
Based Access Control (CBAC)[13] are some of them[8][9]. In order to
try and distinguish these from one another, we found that CBAC is
terminology mostly used for networking and that CAAS and CBAC are
quite similar. Both of these concepts involves mobile computing and is
used for access control by the use of contextual information. Our research
shows that the term Context-Awareness are most widely used with mobile
computing, we ended up on Context-Aware Access Control.

Our understanding of Context-Aware Access Control is that it is an
extension of ABAC, where attributes are not only a set of static attributes,
but dynamic attributes such as time and location. This is what we will refer
to when we talk about CAAC in this thesis.

CAAC and ABAC provide both flexibility and good fine-grained access
control, however, one needs to have a good model for such access control,
as these rules and policies can become quite complex, and if so, can have
bad scalability.

Having discussed authentication and authorization in access and
context-aware in access, we will now address developments in Internet
technology, allowing the access and the relation of data.

2.5.6 Context information

Mobile devices always knows something about itself or its environment.
The device usually knows where it is, what time it is, and even the
temperature in its location. This kind of information is usually called
context information. Dey et al.[15][1]

Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an
application, including the user and applications themselves.

14

In other words, context can be every piece of information we can gather
about the environment that is actually useful to the application. However,
Dey and Abowd proposed a set of four context types that would help to
categorize and application as context-aware and non-context-aware. By
their definition, a context-aware application contains information about
Location, Identity, Time (date) and Activity. Location being the physical
position of the entity (user), Identity being the identifier of the entity
(UserID 3), Time being the time of interaction, and Activity being the
trigger of the interaction.

Context information can be an important part of access control. From
our example where Bob is at the airport and want useful information on
what to do when he has spare time before his flight leaves, the back-end
system may be able to view parts of his profile based on his location.
However, context does not necessarily need to be associated with security.
There are already a lot of mobile apps which uses contextual information
to help the user, for example mobile apps used for public transportation
which commonly uses both time and location.

How context information can be used in an authorization model will be
covered in detail in chapter 3.

2.5.7 Semantic Web

The semantic web[5] is an extension to the current web that promotes
common data formats. The web has expanded too quick in order for the
technology to be able to follow. The current situation is that the web only
consists of documents with content understandable by humans. The vision
of the semantic web is to bring structure to meaningful content of web
pages. The web pages would be structured by adding machine-readable
tags to the human-readable information, then machines will be able to
understand the information and reason on that information.

A web link can essentially point to anything, but in the semantic web, a
link, or a URI[4] is used to identify an object. By using such a structure, we
can distinguish objects with same name, but different purpose. Consider
placing an order of business cards. You might want the cards delivered to
you office address, but you want the regional office to take care of the bills
(i.e delivery:address and billing:address).

So, what can semantics actually do for us? As mentioned, the semantic
web consist of data and relations between these data. If the whole web were
semantic, it could help us with a lot of things. The system could reason
and check the consistency of data. Consider you did a lookup on a person
you wanted to get in contact with. You may not know the persons first
name, but you know that he/she works in the anthropology department at
the National Museum of Natural History in Washington D.C, lives around
the area of Dupont Circle and has a son studying History at Georgetown
University. In the current web, you can’t be sure that the person you find
actually is the person you are looking for, but the semantic web can do
reasoning upon all employees in that research department, check multiple
resources, and compare the data you provided. Taking it one step further,

15

one could easily imagine a microwave checking the manufacturers site for
optimal cooking parameters.

2.5.8 Linked data

Linked data was introduced by Tim Berners-Lee in 2006[6]. Berners-Lee
created four rules, or expected behavior, for linked data to help the web
grow:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using
the standards (RDF*, SPARQL, where RDF* describes links between
things on the web and SPARQL is used to query these).

4. Include links to other URIs. so that they can discover more things.

The example of linked data he describes is primarily meant for RDF,
but from our knowledge of OData, the rules described by Tim Berners-Lee
are also applicable. The rules of identifiers and relationships are also a core
part of the OData protocol, which we will cover more in detail in 2.6.2.

2.6 Technologies and tools

In this section we will touch briefly on the technologies and tools that we
consider may potentially be a part of our implementation. We will early on
select a platform and focus on selection of technologies on this platform.
However, we acknowledge that there are other platforms out there, so
we choose to mention these briefly as well. Finally we will talk about a
selection of technologies that are platform independent.

2.6.1 Platform

We knew early on that there is a variety of platforms that can potentially
be used to solve the problem from section 1.1, create a context-aware
authorization model for semantically structured data. We accept that there
is too much work to learn everything about the world. We have chosen
the Microsoft platform, because to the best of our knowledge, there has
yet to be created an implementation from our scenario on this platform
and this thesis is focused on a business perspective. Most corporations use
this platform 56[30].This platform is currently used on 81.64% desktops and
45.8% servers worldwide7. With these numbers, we consider Microsoft to
be a reasonable choice of platform.

5http://www.netmarketshare.com/operating-system-market-
share.aspx?qprid=10&qpcustomd=0, accessed August 2013

6http://www.forbes.com/sites/quickerbettertech/2013/05/06/why-most-businesses-
will-keep-buying-microsoft, accessed August 2013

7as of August 2013

16

2.6.2 OData

OData is a application-level protocol for interacting with data via RESTful8

web services [17]. It provides facilities for machine-readable descriptions,
sets of data entities and their relations, filtering and querying over data,
CRUD-operations, custom logic and vocabularies. OData is designed
to work over a variety of data stores, but is mainly used for relational
databases. URIs in a OData scenario may represent an object or a collection
of objects.

The first version of OData was released in Febuary 2009[17] and have
since then being put to use by huge communities on the web9. Among
these are well known web-sites such as StackOverflow, eBay, TechEd and
Netflix. The purpose of OData according to the OASIS OData Technical
Committee:

There is a vast amount of data available today and data is now
being collected and stored at a rate never seen before. Much, if
not most, of this data however is locked into specific applications or
formats and difficult to access or to integrate into new uses.

- OASIS OData Technical Committee

Entities in OData has a semi-semantic structure where each object has
its unique URI, where semi-semantic means that the data is not stored
semantically, but is rather presented semantically, by using a schema
between the database and the application. Each entity has a set of data
attached to it and also relations to other entities, navigation properties.
Figure 2.4 show an example of an OData entity structured in XML.
The <id>-tag shows that entities unique URI. The <link>-tags shows
relationships to other entities, and the <properties>-tag shows data that
describes this entity.

Atom

For publishing data, Microsoft created the OData Atom Format, which is
an extention of the Atom Syndication Format[28] and the Atom Publishing
Protocol (AtomPub)[18]. In short terms OData Atom Format extends these
standards for representing and querying data. The published Atom data
contains metadata, a description of the Entity Data Model (EDM) and
Common Schema Definition Language (CSDL)10.

Entity Framework

OData needs somewhere to store the data, and this protocol has out-of-
the-box support for several relational databases, such as Microsoft SQL
Server, Oracle and DB2. There is a possibility of supporting other data

8http://searchsoa.techtarget.com/definition/REST
9http://www.odata.org/ecosystem, accessed Febuary 2013

10http://www.odata.org/documentation/odata-v3-documentation/common-schema-
definition-language-csdl/, accessed Febuary 2013

17

Figure 2.4: Example of OData response in AtomPub format

stores, which can be done by implementing an interface in the Entity
Framework (EF). OData mainly uses EF as an interface to manage the data
in a relational database. EF is a part of the Microsoft toolbox and is widely
used in development processes using the .NET framework.

There are several options available if we want to work with Entity
Framework: Code First, Model First or Database First. In Code First we create
classes and generate the database from that class structure. In Model First,
we can create a visual database diagram and generate classes and database
from that diagram. The last option is Database First, where we want to use
an existing database and generate a class structure from that database.

One thing that is particulary interesting about EF is that it also provides
a scheme and connection string between the application and database.
When you want to access data from the database, the returned data will be
a collection of entity classes, which can be used directly in the application
without worrying about writing queries, SQL injection and class mapping.
EF takes care of that part. However, if desired, it is possible to map classes
manually or use thirt-pary frameworks to perform the task.

LINQ

LINQ is a query language developed by Microsoft and provides a strongly
typed query language which does type checking at compile time. In time

18

of writing, it is already implemented and used by a variety of objects
withing the .NET framework. If your data source does not already support
this query language, one can easily implement this by implementing an
interface.

2.6.3 Semantic web technologies

RDF

Resource Description Framework (RDF) is used to express relations
between objects, in RDF terminology called triples. These triples are
expressed in XML and provides meaning to our data. If we for example
have have two objects, "John" and "Maggie", we can give these two a
relation (property) by expressing that John is son of Maggis or Maggis
has son John. This gives us a way of describing the data processed by
machienes. RDF uses URIs to encode information about a document, and
by using URIs, we can be sure that these concepts are not just words but
unique definitions that everyone can find on the web. Putting this comcept
in practice, we can define that a field in a database "address" is of a type
address using URIs rather than just the phrase address.

RDF does not have to be defined just as triple stores. This concept can be
extended with named graphs 11. Like triple stores, these named graphs are
identified using an URI, and allows for extended description of the triple,
such as context, created time, owner and other metadata.

SPARQL

SPARQL Protocol and RDF Query Language (SPARQL) is a query lan-
guage, standardized by W3C, designed to query RDF. SPARQL is recog-
nized as one of the key technologies in semantic web.

Ontologies

How do we know whether an address in database 1 and address in
database 2 is the same thing. This is where the Ontology comes in, which
basically is a collection of information. Ontologies provides the ability to
create classes, subclasses and the relations among them. We can assign
properties to these classes and subclasses can inherit these properties. With
the use of ontologies, we can express that if John is child of Maggie, and
Maggie is child of Robert, then John is grandchild of Robert. The machine
might not truly understand this information, but it can look at the relation
between these objects and perform reasoning on that information. An
example of an ontology language is OWL.

SWRL

Semantic Web Rule Language (SWRL) is a W3C standard that can be used
to construct rules and logic. Rules consist of antecedent and consequent.

11http://www.w3.org/2004/03/trix/, accessed September 2013

19

This means that when a condition in antecedent is fulfilled, the condition
specified in consequent must also hold. Here is an example: If if John has
parent Peter and Peter has brother James, James is uncle of John.

2.6.4 GData

The Google Data Protocol12 is a REST-inspire technology for reading,
writing and modifying information on the web, and can be used in largely
the same way as OData. This technology is used for most of Google’s
available applications. Google provides a large variety of APIs that can
be used to create custom consumer applications against a Google account.
However, Google does not provide a provider API so that programmers
can create their own REST services based on GData technology.

2.6.5 XML

XML[11] is a W3C standarized markup language which defines a set of
rules for encoding documents in a format that makes the data human-
readable and machiene readable. XML follows a structured standard, it
lets its users create arbitraty tags consisting of parameters and values.

XSD

XSD or XML Schema[33][10] is a W3C standatdized schema language for
XML. XSD is used to express a set of rules in which an XML document
that is attached to this specific schema must fullfill in order to be valid.
By attaching schema to an XML file, some software can read this schema
and give the developer feedback on what can be the next element in the
structure.

2.6.6 Policy languages

Our research shows that there are two policy languages available: WS-
Policy and XACML. WS-Policy is a policy language, and W3C standard,
that allows web services to use XML to describe requirements for security,
quality of service, data integrity and access control in a specific domain. A
WS-Policy consists of a collection of policy alternatives, which again is a
collection of policy assertions. A policy assertion describes a requirement,
capability and other properties of a behavior. Microsoft and Microsoft
Research maintains a framework, Web Services Enhancement, and tools,
Samoa, to create such secure web services13.

eXtensible Access Control Markup Language (XACML) is a access
control policy language implemented in XML, which is maintained by
OASIS14. These policies describes how to evaluate authorization requests
according to the rules specified. XACML is primarily used as ABAC, where

12https://developers.google.com/gdata/docs/2.0/reference, accessed November 2013
13http://research.microsoft.com/en-us/projects/samoa/, accessed September 2013
14https://www.oasis-open.org/, accessed November 2013

20

the policies describes what attributes is needed in order to access a resource
with the specified action. These XACML policies can consist of policy
sets and policies, which defines subjects, resources and action. Subjects
being the requirement to be fulfilled in order to gain access to the specified
resources, where action specifies what access that is given by fulfilling the
subject requirement to that resource. This is a policy language that is easy
to understand and can create complex policies, but require a lot of markup
to describe simple policies.

21

22

Chapter 3

Authorization models

3.1 Introduction

In this chapter we will mainly focus on state-of-the-art authorization
models available on the market. Since the early millennium, there has been
done extensive research on this topic and some research institutions have
even created some frameworks for context-aware authorization models. In
the early 2000, our research shows that even though this has been a hot
topic, only recent years there has been a desire to put these concepts into
practice. The following section will provide what we consider to be the
most applicable authorization models to our research.

3.2 State-of-the-art authorization models

Costabello et al [14] proposed an CAAC-model for authorization, based
on graph stores that consists of triples. Triples are composed of a subject,
predicate and object. Such a triple describes how a subject is related
to the object (Bob likes Sushi), usually in a RDF format [34][13]. This
authorization model is based on a S4AC ontology, which is used for fine-
grained access control policies for RDF data. In addition to this ontology,
they use a vocabulary they call PRISSMA to model the context of a user, and
SPARQL to communicate between the mobile device and actual data store.
Between the mobile device and data store, there is a pluggable component
called Access Control Manager (ACM).

Resources are organized as graphs, with RDF and is identified by URIs.
Each graph describes owner and the resource itself. The main component
of the access policy is the S4AC model, which defines the constraints that
must be satisfied in order to be able to access a graph.

They define their context in three dimensions: User, Device and
Environment. The user is the actual user of the system, the device is
the device used by the user to communicate with the system, and the
environment is the context information such as location, time and activity.
The user (with help from the software on the mobile device) creates a
SPARQL query, the mobile device accesses the context and sends this query
into the system. The query is picked up by the ACM, which filters the

23

Figure 3.1: Overview of the MOSQUITO Context-Aware Access Control
framework

query. The ACM first checks the integrity of the contextual information
(future work) and selects the policies that is effected by the query and
evaluates them. The evaluation returns the set of named graphs the user
has access to and the query is only executed on these. After the execution
of the query, the result is returned to the user.

Walter et al.[26] proposed the MOSQUITO framework that can be
used for Context-Aware Access Control. In addition to authorization,
it also covers security, encryption, data integrity and trust. Like Bhatti
et al’s[8] proposal, it is focused on a SOA based architecture, which
means that it consists of services that can work together across different
devices/computers/services in a network without human interaction.
Here we will mostly talk about the authorization part of the framework,
but will also mention briefly the other components of the framework in
order to pinpoint where the authorization process fits in.

As we can see in Figure 3.1 consists of three layers. The first layer is
the Application layer, which is located on the device. This layer contains two
components, the application itself, and the Security Policies, which will be
our main focus here. Objects are secured by these policies [19][12][9][34].
XACML is used to define access control rules that take context into account.
SAML is used to define what context information that is required in order
to validate the rule. The second layer is the Middleware, and is the most
complicated layer. This layer is used to exchange and encrypt messages

24

(SOAP), check for data integrity, service discovery and to be designed tasks.
An example of a task can be to pull a service for information every thirty
minute, get current device location, etc.

The third layer, Platform, is the hardware layer. This is the interface
that is used to get context information like location and temperature. Like
mentioned above, we are going to go into detail about the authorization
process of this framework and touch briefly the authentication process to
create a overview. When a device comes into contact with a service it want
to exchange information with (CRUD operations), they exchange metadata
information to agree on the authentication. When they have agreed,
the device sends the request containing action, credentials and context
information. When the middleware has performed the trust evaluation,
it forwards the request to the service.

When the back end receives the SOAP request, it requests the autho-
rization service. The authorization services XACML engine is used to ap-
ply context-aware policies and returns a decision that is enforced by the
policy. If the policy requires additional information, the service will send
a similar request to its Trusted Third Party (TTP). Once the policy have all
the information it needs to make a validation, it will grant access or deny
access.

In 2004 Hu and Weaver [21] proposed an authorization scheme that is
based on CAAC, implemented in .NET. The vision of this authorization
scheme is to withhold access until it is needed. Therefore no authorization
level (i.e Administrator) can give access to potentially everything. Their
scheme is based on an extension to RBAC to consider context and is divided
into three main components. These components are authentication engine,
authorization engine and context service. The authentication engine has its
traditional role with authenticating the user and provides the user with an
identity and security token in return. The authorization service provides
administrators with the possibility to create access rules based on the WSE
framework’s WS-Policy[9]. These policies, in addition to specific users
or roles, also defines contextual information that needs to be validated in
order to be able to access the resource specified in the policy. This provides,
according to Hu and Weaver, flexible fine-grained access control that is
evaluated at runtime. All resources or set of resources are bound by these
policies. Finally, the context service manages a repository of all context
definition. In practice, the authorization engine contacts the context service
each time it needs to evaluate a policy that requires contextual information.

Toninelli et al. [35] introduces a CAAC framework that is designed for
ad-hoc collaboration between mobile devices. They state that permissions
based only identity/role is not sufficient in such spontaneous coalitions
and such introduce the concept of context-aware access control. The
argument is that in such scenarios, entities may need to share services
with other unknown entities and maybe other entities which may not be
sufficiently trustworthy. In addition to this, entities may need to change
roles (from consumer to provider or vise versa), and new policies needs
to be applied. They propose a semantic context-aware access control
framework where one can both, define policies and where policies are able

25

Figure 3.2: Model for OWL-based policy specification fod ad-hoc collabo-
ration between mobile devices

to adapt to changing situations.
The access control model consists of an ontological approach, OWL[29],

based on Description Logic (DL) for context/policy classification and Logic
Programming (LP) for dynamic adaption of policies. Access control poli-
cies can be viewed as one-to-one associations between contexts and al-
lowed action, referred to as protections contexts: ProtectionContext(context,
allowedAction). Here the entities can only perform these actions when that
context is active, as well as all entities that share the same context are al-
lowed to operate on that same resource with the assigned action.

They define context as ”all characterizing information that is considered
relevant for access control”. Toninelli et al. divide context into four
elements: identity, time, location and action. However Toninello et al.
makes a more clear distinction between the user and context information
by dividing the context into two parts, the actor part and environment
part. The actor part is the roles, identities or security credentials. The
environment part contains all information about the environment, such as
time, location or other available resources.

The policy model consists of three distinct phases: policy specification,
policy refinement and policy evaluation. The policy specification is where
administrators define the OWL-based policies, also called aggregation
rules. These policies consists of ontological associations between actions
and protection contexts as seen in Figure 3.2. The protection context has
static or variable values. The variable values are set by the use of LP, which
is returned to DL. These policies are only used as definitions and cannot
be used in the real world. The policy refinement phase is where these
aggregation rules gets instantiated and adapted to the particular state of the
world. The evaluation phase is where protection contexts gets evaluated
against current state of the context elements. Note that refinement and
evaluation may be triggered by a resource context change, i.e, the resource
changes location.

Samuel et al. [31], inspired by the Katrina Hurricane in 2004, present a
theoretical mechanism for adaptive access control. Similar to [25][8][7][27],
this model uses an extension of RBAC with context. When a user needs
access, depending on if the system allows it, will be given a temporal
role that is used to access a specific object. The goal of this system

26

Figure 3.3: Access-Control policy adaption for critical situations

is to be used as a CAAC-model on a day-to-day basis, but is attached
to distributed sources that contain information about crisis or potential
crisis. Considering this, they purpose to divide policies into two categories.
Normal Constraints (NC) are policies used on a day-to-day basis and
Critical Constraints are used when there is recorded a crisis situation. As
well as constraints, users are also split into two categories, Weakly Enforced
Users (WEC) and Strongly Enforced Users (SEU).

Figure 3.3 shows the system as a whole. However, like mentioned
above, there are two user cases: access control under normal circumstances
(marked with green labels) and access control for crisis management
(marked with red labels). The policies are created and stored in the Access-
control policy base (ACPB). The Policy Instance Generator (PIG) creates an
instance of the policy with the NC (default).

When a user wants to access an object, he/she sends a request to the
Access-control decision module (ACDM). This request contain time, user
location and reference to the object the user needs access to. The ADCM
will evaluate access in conjunction with the Policy Instance Manger (PIM).
If access is granted, the ADCM will return the object to the user.

Depending on the setup of the system, the Activity Query Interface
(AQI) will get information from the distributed sources of activity context.
If a crisis is detected, the AQI will forward the crisis context to the Activity
Evaluator and Extractor (AEE). AEE sends context parameters to PIM,
which requests a different policy instance from PIC, based on the activity
context value and the CC in the policy. The PIG will then create a new
instance of the policy and load it into the ACDM. When a user then
sends a new request, access will be granted based on the users contextual
information and class in the system (depending whether on the user is a
WEU or SEU).

27

28

Chapter 4

Technology selection

4.1 Introduction

In this chapter we will look at what options we have from section 2.6
and make a selection out of the presented technologies. Since we early
on selected Microsoft as our platform, some of these choices are straight-
forward, but where there are several options, especially in platform
independent technologies, we will evaluate these side-by-side.

4.2 Selection of key technologies

4.2.1 Integrated Development Environment

Even though it is fairly easy to imagine the Integrated Development
Environment (IDE) to use with .NET, there are actually several open source
alternatives to Visual Studio. Fortunately for us the university provides us
with educational licenses for Microsoft products, and since we have most
experience with Visual Studio, the choice has landed on Visual Studio 2012
(VS2012). The actual choice of Visual Studio version could be 2008, 2010
and 2012, as the newest .NET framework is supported in all these version.
At this point it is a matter of personal preference and we have chosen 2012
because that is what we are most familiar with at this point.

4.2.2 Web server

There are several web server softwares available, but we have considered
the two most known ones, Internet Information Services (IIS) and Apace.
Apache has modules that, to our knowledge, should be able to run .NET
applications. However, the core of this system is based on Microsoft
technologies and we can use IIS at no additional cost. Another reason for
choosing IIS is that VS2012 comes with a web server called IIS Express,
which is a development server that is almost identical to the regular IIS
server, and therefore make our development process easier.

29

4.2.3 Data structure

Our research shows that there are several official an unofficial libraries that
can be used to work with RDF-stores from the .NET platform. When we
say unofficial we talk about libraries or plug-ins that is not available in
Microsoft’s NuGet packet manager. W3C has a list of available options 1.

The one most known to us is the dotNetRDF Library 2 which is an open
source API for working with RDF, using the .Net framework. This library
is currently being worked on and was last updated 6th of May 2013. This
is also available through the NuGet packet manager in VS.

LinqToRdf is another Semantic Web framework for .NET. This frame-
work provides functionality both for querying RDF databases using LINQ,
This Semantic Web framework translates LINQ queries to SPARQL queries,
which again is used to retrieve data from RDF files. It also provides a UML-
style surface for creating RDF files. Unified Modeling Language (UML) is
a modeling language used for object-oriented software systems 3.

RDFSharp4 is hosted at CodePlex, which is a well known resource
for .NET developers. This library offers a toolbox for working with RDF
models and supports triplets, graph, among other things, as well as the
ability co execute SPARQL queries on graphs and triple stores.

Open Anzo project5 is featured with quad store and semantic web
middleware platform, for creating RDF, OWL and SPARQL applications.
Rather than being a REST protocol, the middlewarel provides a set
of services for replication, notification, model, authentication, query,
update. Anzo supports a Service Oriented Architecture (SOA), and
currently provides APIs for .Net, Java and JavaScript. Additional storage
architectures may be supported by implementing interfaces. A major
architectual feature og this project is the support of offline use. This is a
part of the client API and all graph changes are cached in the local replica
automatically. We are only mentioning this project briefly, but it has a lot
of other features, such as SPARQL query engine, reasoner and Command
Line Interface (CLI). Cambridge Semantics Inc. offers the Anzo software
suite that is a set of tools to be used together with Anzo.

We also found other tools for .Net programmers to work with RDF and
OWL. The ones we found was Drive and ROWLEX. Unfortunately these
projects are note in development anymore and has been taken down from
the web.

We have chos OData for the data structure part in this implementation.
Although this protocol is no longer maintained by Microsoft, it was
originally a product created by them using the own frameworks such
as .Net and Windows Communication Foundation (WCF). From our
analysis on Semantic Web and Linked Data we think that OData fills these
requirements. Every entity has its own distinct URI and data is linked

1http://www.w3.org/2001/sw/wiki/.Net, accessed October 2013
2http://www.dotnetrdf.org/, accessed October 2013
3http://en.wikipedia.org/wiki/Unified_Modeling_Language, accessed October 2013
4http://rdfsharp.codeplex.com/, accessed October 2013
5http://www.openanzo.org/projects/openanzo/wiki, accessed October 2013

30

between entities. With the mapping scheme between data storage and
the software itself, makes the data easy to work with. OData also makes
it easy to to change the client and server software. The OASIS Technical
Committee provides several alternatives both for client and server. Some of
the presented libraries for server, besides .NET, are well known commercial
programming languages such as PHP, Node and Java, which are also
available on the client side6. Databases such as MySQL and Azure
data are also supported out-of-the-box. We are using Microsoft for this
implementation because our focus lies on the enterprise, but there are also
possibilities for free and open-source solution from a research perspective.
OData also supports the JSON format out-of-the-box, which we find most
interesting, if in the future a client wants to make asynchronous calls
to our application with a JavaScript framework such as jQuery. From
the frameworks mentioned above, there are several ways to use .Net to
communicate with RDF stores, but in recent years, both Microsoft and
W3C has presented experiments on how to make these two standards work
togeather. We will cover this in more detail in section 8.2.2.

4.2.4 Data storage

To store our data we have chosen Microsoft SQL Server (MSSQL). MSSQL
is also a part of VS2012 off-the-shelf and therefore also makes our
development process easier. This technology and the ones mentioned
above is not the primary part of the implementation and therefore we want
to stay focused on the problem at hand, without running into to many
technical difficulties.

4.2.5 Policy language

In the research phase of this thesis, there were two policy languages
that was continuously used throughout the implementations, namely
WS-Policy and XACML. From what we gathered WS-Policy was the
Microsoft alternative, and from digging around the web we found that
WS-Policy was part of a framework called Web Services Enhancement
(WSE), maintained by Microsoft research. It is also shipped with a tool
for Visual Studio to create policies. In the following table we will present
our evaluation of these two policy languages:

Framework Availability Integration Scalability Usability
WS-Policy X X X
XACML X

Our evaluation shows that WS-Policy is the best choice of policy
language in our implementation. WS-Policy is available through and
maintained by Microsoft research, easily integrated with our choice
of development environment and comes with its own user interface.
However, it seems that XACML has more scalability and we are more

6http://www.odata.org/libraries/ accessed October 2013

31

free to choose how to use the policy language. We found two main
options for how to work with XACML in .NET, Axiomatics7 and a
framework called XACML.NET8. Axiomatics is an enterprise software
company with main offices located in Sweden. Their software for fine-
grained access are available through payment and even has an API for
programming .NET. XACML.NET is a XACML framework for C#, however
this implementation seems old and like it is not maintained or developed
further. Based on these analysis, we have chosen to create the policy part
of the implementation using WSE and WS-Policy.

4.3 Selection of context used in authorization

If we go back to the scenario in this thesis, time and location may be two
important pieces of context information, whereas the temperature of the
weather outside may not be as important. Although all this information
may be considered context in general, temperature will not be considered
context for this implementation. We believe in Dey and Abowds selection
of primary context attributes[15] and we also feel that i would seem
unnatural to build a context-aware application without these primary
attributes. Therefore we will consider using three out of the four primary
context attributes: UserId, Time and Location as part of our context in this
implementation.

However, while these four attributes may be sufficient for building
a context-aware access control scheme, our implementation has multiple
communication points, i.e the mobile device and the service provider.
We believe it is more secure to gather some information from the service
provider as well. Imagine if someone were to setup their own WiFi with
correct prefix and manages to set up communication to the cloud. In
a worst case scenario, these infiltrates gets context information from the
mobile device, requests the cloud and can potentially get every piece of
information from the requesting users profile. We believe we can avoid
this by also gathering context information from the service attached to
the service provider. From the service we want to gather all four pieces
of the context information. For this impelmentation we think it is more
natural that it is the service provider that decides on the action. This
action however, will be assumed by the service provider, based on the users
context. If we use this information as part of the security we believe that
in a worst case scenario, the fake service will only be able to gather context
information about the user and nothing from the users profile.

To further secure data integrity in this system, we will also gather some
information about the service provider. We would like to know the service
providers ID and IP-address. The evaluation process of the cloud can
therefore check if all the actors in this request are who they say they are.

We would also like to provide the user with some key options they can
use in order to force behavior. What this means is to give the user an option

7https://www.axiomatics.com/, accessed October 2013
8http://mvpos.sourceforge.net/, accessed October 2013

32

to set a security threshold if they prefer at any time. This means that if the
system categorizes the context as very secure, the user will be able to force
the system not to get more information than what they consider moderate.
Since this is not a part of the context itself, this will be mentioned more in
detail in section 6.

33

34

Chapter 5

Implementation description

This chapter will start by creating a detailed scenario of how users
interact with our system of context-aware personalized services. We
will then analyze each aspect of these scenarios and put these into use
cases, followed by a selection of these use cases, and finally provide
implementation description with simulation data and expected results.

5.1 System description

In this section we will pick up where we left of in chapter 2, where a person
is out traveling. When this persons mobile device comes into contact with
the system, the device will immediately start sending context information
to the service provider. The service provider asks the cloud for information
about the user and uses that information to again provide the user with
relevant information based on that profile. Further details are provided in
section 2.2 and 2.3.

The scenario will be detailed through use cases and the section will
finish with a selection of these use cases, indicating what we see as the main
challenges to be solved in this scenario. The selected use cases will then
become the basis for the definition of the system that will be implemented.

5.1.1 Scenario

In this scenario we focus on showing users information based on their user
profile, on the go. Following is a more detailed description of what is
described in section 2.2. We sub-divide the scenario in two parts, profile
management and on-the-go.

The main activities in this scenario are defined as follows:

1. Registration / Authentication

2. Manage objects stored in the user profile

3. Discover services

4. Exchange context information with these services

35

Mobile phone /
Identifier

Tr
us

t

User service provider

User

Laptop /
Web browser

Uses Use
s

Trust relationship

Cloud
The data storage

Data exchange

Discover and
send context
information

Web site
A

ut
he

nt
ic

at
io

n

A
ut

ho
ri

za
ti

on

Trust relationship

Data exchange 4

3

2

1
Manage objects

Figure 5.1: Detailed system description for scenario upon profile manage-
ment and getting personalized services

5. Access objects in user profile from a service provider

We will start with the home-scenario, describing point 1 to 2 where the
user updates their user profile. Later in the on-the-go-scenario, describing
point 3 to 5, where a user is moving between locations and the mobile
phone discovers services.

Profile management

The main goal of the at home scenario is to create preferences for service
offers being abroad. These preferences are defined though a user profile,
which can be accessed through a web page, mobile app or other services.
The web page or mobile app can be seen as a front end for the cloud
user profile. A standard user registration system such as username and
password, password on SMS, or other methods may be used to get access
to the user profile.

To get a system profile, the user needs to register in the system. The
profile service lists existing objects registered on the user and provides
functionality to register new objects, as well as modifying and deleting
existing ones. A user may be able to add food preferences, hotel preferences
or travel preferences, but may also be able to add information that is more
secure in nature, like a payment card or other similar things. When the
users add information to their user profiles, this is to be viewed as an
initialization process. When the system has a set of information about the

36

user, requesting services will be able to reason on this information, not
only for further use, but also to add to the users profile. Each of these
information is linked through policies defining how the information of this
object can be accessed, and what kind of access that is given by fulfilling
each policy.

From the clouds front end point-of-view, when a user wants to manage
their objects, one of two actions can be performed: manage or read objects.
The front end views a read request when a user wants to list objects or view
information about a certain kind of object. A manage request is viewed by
the front end when a user wants to create, update or delete an object. Before
front end can forward the request from the user to the cloud, the user needs
to be authorized by the front end. After the user has been authorized, the
request is forwarded to the cloud. Authentication, authorization and object
requests to the front end from the user is marked in Figure 5.1 by 1.

When the request is received by the front end from the user, it is
forwarded to the Cloud. The cloud receives the request an first identifies
that the request sender is the front end. The front end has special read
and write permissions for all objects for the current user, and therefore the
request will be approved by the Cloud. The Cloud will manage the current
object request with data store, save the changes and return an approved
request to the front end. The front end will then show the user the latest
changes to objects. The interaction between the front end and the Cloud is
marked in Figure 5.1 by 2. A front end such as a web site may be part of
the cloud, but an app is naturally stored on the mobile phone itself.

5.1.2 On-the-go

The main goal of the on-the-go is for the user to be able to exchange
information with the system without physical interaction. Interaction
between the user and the system is through the mobile device, which holds
contextual information about the environment, time, location, activity and
other contextual information.

A user walks into an area which runs this system, carrying a mobile
phone with wifi turned on. This area can be a train station, airport, buss
station, or any other location which is a part of the system. The mobile
phone discovers the system via a WiFi prefix and tries to connect to it. All
the mobile phones registered in the system will have a certificate, or some
other method of identifying that it is registered and a valid component in
the system. The mobile phone will send this certificate to the system via
WiFi. If the certificate is approved, the mobile phone will now start to
gather contextual information from its sensors. This contextual information
consist of the ID, time, location and action, the action being the key of what
action the user wants to perform, and in this automatic encounter, retrieve
relevant information to the user about food services, transportation and so
on. After all contextual information is gathered by the mobile phone, it will
send this information to the service provider. This interaction is marked in
Figure 5.1 by 3.

When the service provider receives request from the mobile device, it

37

will start gathering its own context information. The service provider will
always only need to read information from the Cloud, so it will send a read
request. This read request contains what information the service provider
will need about the current user, and all the gathered context information.
When the cloud receives the request form the service provider, it will ask
the data storage for all the objects. As mentioned in subsection 5.1.1 all
objects have policies attached to them which will need to be evaluated
with respect to trustworthiness before the Cloud can return this data to
the service provider. For each object, every one of that objects policies will
be evaluated against the context information received by the cloud. If all
requirements by the policy is met, that object will be part of the return
message from the cloud back to the service provider. This interaction is
marked in Figure 5.1 by 4.

When the service provider receives object information from the Cloud,
it will be evaluated. The service provider wants to show services
and information to the user user, based on the preferences and other
information that the user provided to his/her profile in the cloud. This
information is intended to be shown to the user anonymously, meaning
without showing name, user id or other identifiable information. This
in particular because this information will be displayed in public. All of
these objects will have an unique identifier, i.e an URI. To get a wider
understanding about these objects, the service provider uses this object
identifier and connects to other open data stores around the world to
gather additional information about the current object. This information
can be for example a restaurant location, metro time tables, hotel locations
availability and check-in times etc... By combining user preferences and
information open data stores, the service provider can construct services
and information that may be relevant for the user. When the service
provider have constructed this relevant information, it will present this
information to a TV that is closest to the users location.

One other thing we would like to add to the scenario, is how more
secure services, such as payment can treated in conjunction with the
user. We use the example of payment or access to payment information
being used for restaurant, kiosk or other services, such as ordering of
entertainment tickets. The service of ordering, being connected to the
cloud, will ask the user for payment information from the users phone.
The users phone may then initiate a link between a payment provider
and the established service, such that the payment for the service can be
performed. The focus here would be on the final provision of information
through the users mobile phone, rather than through information in the
cloud on its own. However, we do not want to keep information like this
in the cloud. This is an example of establishing a shared secret between
the payment service and the users bank, a secure channel generated on the
mobile phone.

38

5.2 Use case description

In this section we have divided the scenario into smaller parts and use
cases. We first divided the two scenario parts into flowcharts and then
created a separate use case for each process. In addition to the two
scenarios, we have divided the Cloud into its own part because it is
complex on its own and consist of multiple layers. These use cases have
been created on the format presented by Skagestein [32], and we have used
guidelines provided by IBM [20].

Home scenario

The flowchart in figure 5.2 shows the processes for the home scenario.
Following are the use cases that goes for each main process. Orange
marks start and end point, green marks web site processes (vertical lines
as subprocesses, part of use cases) and purple color marks decisions.

39

Figure 5.2: Flowchart home scenario where users manage their user profile

40

Use case 1 Profile management

Primary actor: User

Preconditions: • User has accessed the profile front end

Postconditions: • User is logged in

• User can access owned objects

Trigger: User tries to manage objects

Main success scenario:
1. User accesses the front end

2. Front end requests user for username and password

3. User enters username and password

4. Front end authenticates user

5. Front end displays user profile preferences

Extensions:
2.a User is not registered in the system

1. User clicks on the registration link/button

2. User registers

3. User returns to step 5

41

Use case 2 Manage owned objects

Primary actor: User

Preconditions: • User is authenticated on his/hers user profile

Trigger: User interacts with owned objects

Main success scenario:
1. Front end authorizes user

2. Front end presents existing objects to user

3. User performs CRUD operations on owned objects

42

Use case 3 Exchange information with cloud

Primary actor: Front end

Preconditions: • Trust relationship between front end

Trigger: User makes request on the front end

Main success scenario:
1. Front end creates request with context and role information

2. Front end sends request to the cloud

3. The clouds middleware receives the request

4. Middleware exchanges data with the cloud policy engine

5. Middleware constructs a response message

6. Middelware sends response to front end

43

On-the-go

The flowchart in Figure 5.3 shows the process for on-the-go scenario.
Following are the use cases that goes for each main process. Orange marks
start and stop, green marks the processes of the mobile phone and blue
marks the processes of the service provider.

Describe the figure and link it to the use cases

Figure 5.3: Flowchart service provider where the users mobile phone
requests personalized services and authorizing access to their user profile
by providing contextual information

44

Use case 4 Service discovery

Primary actor: User/mobile device

Preconditions: • Mobile device have WiFi turned on

• Mobile device must be registered for the sys-
tem

Postconditions: • Mobile device is connected to WiFi

Main success scenario:
1. User walks into a system area

2. Mobile device discovers WiFi with prefix name

3. Mobile connects to WiFi

Use case 5 Send contextual information

Primary actor: Mobile device

Preconditions: • Mobile device is connected to WiFi

Trigger: Every set interval

Main success scenario:
1. Mobile device gathers context information

2. Mobile device sends contextual information to service provider

3. Service provider sends request to cloud

4. Service provider receives response from cloud

5. Service provider performs actions according to request sendt by Mobile
device

45

Use case 6 Request information from cloud

Primary actor: Service provider

Preconditions: • Trust relationship between service provider
and cloud

Trigger: Service provider receives context information from
Mobile device

Main success scenario:
1. Service provider creates a request with context and role information

2. Service provider sends request to the cloud

3. The clouds middleware receives the request

4. Middleware exchanges data with the cloud policy engine

5. Middleware constructs a response message

6. Middleware sends response to the web site

46

Cloud scenario

The flowchart in figure 5.4 shows the processes for the cloud evaluation.
Squares with no vertical lines represent a main process and will have its
own use case. Squares with vertical lines represent subprocesses and will
be part of the main processes use case. Orange marks the start end end,
blue marks the processes in the cloud, green marks the policies and purple
marks objects that are to be evaluated. For this flowchart, we will create
only one use case. The reason for this is that even though the Recieve
request and Send response may be categorized as processes, these processes
are simple and therefore fits better into one whole use case.

Figure 5.4: Flowchart evaluating access control in the cloud service

47

Use case 7 Evaluation process

Primary actor: Cloud message handler

Trigger: Message handler receives request

Main success scenario:
1. Message handler receives a request from the service provider

2. The request is divided into two parts. One part for context and one part
for the data request

3. The request is sent to the evaluation engine

4. Evaluation engine retrieves relevant objects from data store

5. Evaluation engine gets policies for each object

6. Evaluation engine evaluates context data against each policy

7. Evaluation engine returns each valid object to message handler

8. The message handler constructs a response message

9. The message handler sends response to the service provider

Data variations:
7a. Object requestor is Web site

1. Actions performed may be CRUD

7b. Object requestor is Service provider

1. Actions performed may only be read

5.2.1 Selection of use cases

In section 5.2 we described all use cases that is relevant for our scenario.

1. Use case 1 - Profile management: This use case can easily be
implemented out-of-the-box with the selected .NET framework if
created as a web page. For mobile apps, Android and iOS
frameworks are available.

2. Use case 2 - Manage owned objects: To achieve this functionality, we
need to have communication with the cloud.

3. Use case 3 - Exchange information with the cloud: This use case and
use case 2 go hand-in-hand.

48

4. Use case 4 - Service discovery: To implement this functionality we
could have an app on the mobile phone that is specifically created to
talk to this system.

5. Use case 5 - Send contextual information: For this use case, the app
in use case 4 could gather information from mobile phone sensors or
other built-in applications.

6. Use case 6 - Request information from cloud: For this functionality,
the service provider needs to be able to communicate with the cloud
.

7. Use case 7 - Evaluation process: This use case needs to consist
of multiple layers. Message handler, evaluation engine and data
storage.

As we can see from the above list and evaluation, some use cases can
be fairly easy to implement with off-the-shelf-products and some requires
larger amounts of work to implement. The scope of this thesis is context-
aware access control authorization, and with this in mind, we believe that
in order to make an implementation that reflects our problem statement,
we choose to implement use case 5, 6 and 7.

5.3 Scenario simulation

At the above section, we have evaluated the system and selected use case
5,6 and 7. Use case describes how context information is gathered from
the mobile phone, sent to the service provider, which requests information
about the users profile in the cloud service. Use case 6 describes where
we send a request for the users profile information in the cloud with
context information and get back parts of the user profile based on that
information. To be able to determine what information the service provider
is allowed to see, we need to evaluate the request and context, which is
described in use case 7. To create and evaluate our implementation, we will
create a simulation of a selected user experience. We will first describe this
user experience in detail and then we will make a selection of the attributes
that will be evaluated.

5.3.1 User experience

In this user experience we have selected two users, Bob and Cathrine.
Both of these users will experience the same scenario and have the
same information in their user profile. However, Cathrine will have
a more trustworthy profile than Bob. Bob is more concerned about
security. The result of this difference between profile security is that,
even if the users are in the in the same situation, Cathrine will get more
personalized information because she allows the service provider to view
more information about her profile.

49

In this simulation, both users will arrive at Gardermoen airport in
Norway and has got time to spare before their flight leaves. We assume
that they want suggestions of what to do with this spare time. They each
carry their mobile phone, which is registered in the system. Bob and
Cathrine both have created their user profiles with security policies, by
logging into their account using their credentials at the cloud front end.
When the users enters the airport, their mobile phone will immediately
start searching for service providers. When a service provider is found, the
mobile phone will start the authentication process. Once authenticated, the
mobile phone will start gathering contextual information and send these
to the service provider. For the service provider to be able to display
personalized information to Bob and Cathrine, the service provider will
generate a request, containing the request itself for profile information and
the context information. The cloud will request user profile information
locally and tell the policy engine to evaluate each policy attached to the
profile information against the received context. For each of the policy
information that the policy engine evaluates as approved will be returned
to the service provider.

5.3.2 Profile structure and security

Eralier in this thesis we selected the context-aware authorization as the
main concern of this implementation, and therefore the main focus of this
implementation will be on the evaluation phase. In this evaluation phase,
access to certain parts of the users profile is the data we will evaluate
access to. The profile is structured semantically as shown in figure 5.5.
It starts at the top node Profile, which is the root of the profile itself. This
root node will have a set of children attached to it, representing each an
individual type of data like the users Food preferences or information needed
to access the users Sosial networking information. This hierarchical structure
will continue with more specific information of for instance the users food
preferences, like Sushi or Pizza and will follow this structure further with
more specific information like Pepperoni pizza.

Figure 5.5: Generalized example of a semantically structured user profile

Each of these nodes or statements will be called Profile Attributes

50

(PA) and the first node alone provides some information about the user.
By knowing that the user has food preferences, the service requesting
information about the users profile will already know that the user may
be looking for places to eat. Therefore, the implemented security will start
at the first nodes, like Food preferences Sosial networks and so on.

Each of these PA’s will have a policy attached to it, as illustrated
in figure 5.6, referred with a number. This policy tells the evaluation
engine what PA it is representing, what is the criteria to be fullfilled and
what access is given by fulfilling this criteria. This implementation will
be limited to requests for reading data and therefore all policies will be
specified to give read access. The policy criteria is that the requestor of this
information, a service, needs to have a Trust Level(TL) of equal to or greater
than the specified criteria or Security Attribute(SA). The SA is defined in
ascending order between 0.0 and 1.0, where higher values represent higher
security, meaning that a value of 0.8 is higher security than 0.5. How the
trust level is calculated will be covered in more detail in section ??.

Figure 5.6: Example of a users PA attached with a SA

What we view as the beauty of semantics is the ability inherit this SA
further down the hierarchy. If a user has set his/hers Food preferences
PA with a SA of 0.5, all children of that PA will have the same SA, unless
specified otherwise. This is illustrated in figure 5.6 where Food preferences
has a SA of 0.5, which is followed by Sushi. Pizza on the other hand
is specified with a SA of 0.7, which is again applied to all of this nodes
children. It is important to note that digging through the user profile is
done iteratively. This means that if a child has a lower SA than a parent,
this information will be unavailable because the iterative process will start
at the parent.

Context information

Our selection of context in this implementation consists of the four main
context attributes [15], ID, Time, Location and Action. Even though there
are only four attributes, they can describe a lot of information about the
context. In a generalized setting these can be some of, but are not limited
to, the following:

51

• ID: The users unique identifier in a system, profile, IP-Address, MAC-
Address or device name.

• Time: Date and time, time of day or time intervals.

• Location: GPS coordinates, place (hotel, airport), country, continent,
county or coordinates in a specific space.

• Action: The users current situation. What is the user doing. What is
the users status. Is he/she unavailable, felling private, or available
for interaction, and what do we expect the user is trying to achieve.

As shown in the above list, there are an unlimited things to consider
when considering context. What context information that is considered
relevant may vary for each application or for each service. If a user is trying
to access train timetables, the ID may not be as relevant as time and location
and when accessing a users profile information, ID may be highly relevant.

Based on our scenario where Bob and Cathrine visits Gardermoen
airport in Oslo, Norway at the same time and both of them has two hours
of time to spare, we have created a set of context attributes which we find
relevant for a context-aware authorization model for access to the users
profile.

• ID: Used to identify the correct user profile in the cloud.

• Time: This interaction will take place at 7:00AM, in our case before
work hours.

• Location: The place of interaction will be at an Airport in Norway.

• Action: The user has two hours of time to spare and will be in need
of something to eat or may be available to interact with colleagues or
other known individuals.

Since the main focus of this thesis is based on the authorization model
for access to a semantically structured user profile, we have made an
assumption that we know the users action, namely that he/she wishes
to get suggested places to eat and is available for interaction with known
people within their social networks. To be able to determine access to the
users profile, the following context attributes has been selected to prove the
concept:

Figure 5.7 shows the context for the scenario users Bob and Cathrine.
All of these nodes or Context Attributes (CA) has a value or Context Attribute
Value (CAV) like Europe, Norway, Oslo, Gardermoen and so on. This
context information will be used in order to gain access to how trustworthy
the user finds the current context. Before we can show how this data
is intended to be used in practice we will first describe how the users
trustworthiness is structured in section 5.3.2 followed by how the this is
related to calculating access to the users profiles in section 5.3.3.

52

Figure 5.7: Contextual information that will be attached to the requesting
services request

User trust

When the cloud receives a request for Bob’s food preferences and context
information, the evaluation engine in the cloud needs to look at the
relationship between the context provided and the trust of the user. Like
the profile, the users trust is also structured semantically. An example of a
user trust structure is shown in figure 5.8.

Figure 5.8: Example of semantically structured trust attributes for a user

The build up of a user trust structure and user profile has the same
design, but they provide different purposes. In the trust, each of the
nodes like Europe, Norway and Place is named Trust Attribute (TA), and
is assigned a Trust Attribute Value(TAV). TAV is defined by a decimal value
between 0.0 and 1.0, where higher value of TAV represent higher or better
trust. As illustrated in figure 5.9, Bob has a trust of 0.7 when present in

53

Europe and Norway, but is more skeptical when in Sweden. The TAV is
inherited by the TA’s children, which means that by default every child
of that TA inherits the TAV, unless specified otherwise. In the example
provided by the figure, children of Norway will by default inherit the TAV
og 0.5 where as children of Sweden will continue to inherit the value of 0.5.
Bold nodes show TA’s that are relevant for the context of this simulation.

Figure 5.9: Snipping of Bob’s trust relationship to Norway and Sweden

5.3.3 Calculating trust level

When the evaluation engine in the cloud receives the request from a service,
it will calculate and delegate a Trust Level (TL) to that requesting service,
which is used to be evaluated against the PA’s SA. This trust level will be
calculated by using the following process:

Figure 5.10 shows how the trust of a user is traversed upon when a
requesting service requests access to the user profile. Based on the context
information in the previous section, we will explain how this traversal
works, and provide the relevant output data:

1. Start at Trust

2. Move to Europe - relevant

(a) Move to Norway - relevant

i. Move to Oslo - relevant

(b) Move to Sweden - irrelevant

3. Move to Places

(a) Move to Airport - relevant

i. Move to Gardermoen - relevant

(b) Move to Hotel - irrelevant

(c) Move to Train station - irrelevant

4. Move to Time of day

54

Figure 5.10: Figure showing how the users trust is traversed upon when
getting relevant trust attributes based on context information

(a) Move to Before work hours - relevant

(b) Move to After work hours - irrelevant

(c) Move to During work hours - irrelevant

5. Move to Place relationship

(a) Move to Unknown - irrelevant

(b) Move to Has approved - relevant

(c) Move to Has been - irrelevant

Through this iterative process, a list of relevant trust attributes will
be constructed, ETA. After the evaluation process, the ETA list will
be narrowed down into one number because each of the PA’s Security
Attribute is only one number, Trust Level (TL). To make it simple, we will
calculate the average trust level from these numbers by using the following
algorithm:

TL =
1
n

n

∑
i=n

ai =
1
n
(a1 + a2 + · · ·+ an)

After the TL is delegated the requesting service, the time has come to
traverse through the users profiles, based on that the TL is greater than or
equal to the SA attached to the PA. The ideal path of the profile traversal
is showed in figure 5.11 with Bob’s profile. However, in order to be able

55

to retrieve all information of Bob’s profile here, an TL of 0.95 or greater is
required. When the profile is traversed, the traversal of child PA’s with the
lowest SA will be evaluated first because when a SA is reached that the
delegated TL is unable to fulfill, further traversal of that PA’s children will
be stopped.

Figure 5.11: Figure showing the process of how the user profile is traversed
upon when authorizing access

An example will be provided in order to clarify how this traversal
works in practice: A service has been delegated an ETA of 0.5 and will
now use this to get information about Bob’s food preferences and social
networks, starting with food preferences. It will start by visiting the PA
Food preferences, where access is granted because TL is equal to that PA’s
SA. It will continue by traversing the child PA with the lowest SA first,
which in this case is Sushi, which will also be granted. The next step is to
traverse Pizza, where access will be denied because the TL is lower than
0.7. Backtrack will be done back to Profile, which will start to traverse the
PA Social networks. The traversal will stop here because the TL is unable
to fulfill the SA requirements for this PA. The same thing will happen for
Payment.

The following list summarizes the traversal of Bob’s profile with a TL
of 0.5.

1. Start at Profile

2. Move to Food Preferences - access granted

(a) Move to Sushi - access granted
(b) Move to Pizza - access denied

3. Move to Social networks - access denied

4. Move to Payment - access denied

5.3.4 Simulation data

In this subsection we will break down the scenario of Bob and Cathrine
into numbers which will be run in the simulation of the implementation.

56

They are both at Gardermoen airport in Oslo, Norway at 07:00AM in the
morning, has two hours to spare before the flight leaves, and are both open
for suggestions to eat breakfast and socialize. Since this thesis focuses on
the authorization part of the scenario, the structure of context, profile and
trust will be simplified in order to prove this concept, rather than focusing
on the semantic structures of the data. We will first present the context
information gathered for both of these users, since they are the same, and
will follow by showing the profile and trust data for both users.

Figure 5.12: Contextual information that will be used in the simulation of
this thesis

Figure 5.7 shows the context information that will be used in this
simulation. The users find themselves in Europe, Norway, Oslo, the time
of day is set to before work hours, the user is either Bob or Cathrine, and
they are at Gardermoen airport.

Bob

Figure 5.13 illustrates Bob’s profile. As we can see, he is a private person,
which requires the context to be very trustworthy in order to view his user
profile. Also, most of his profile follows the inherit of parent SA. Both Social
networks and payment follow this pattern, but over at food preferences
only sushi inherits the parents SA. For the pizza PA, Bob has chosen a SA
of 0.7 instead of 0.5, which will be followed by default by pizzas potential
children.

Figure 5.13: Bob’s profile that will be used in the simulation of this thesis

As mentioned earlier, the users trust is structured in the same way as
the profile, however, as shown in figure 5.14, which illustrates Bob’s trust,

57

not all of these trust attributes makes sense to evaluate. They are in place to
keep the hierarchical structure. Examples of these are the TA’s Places, Time
of Day and Place relationship. In contrast to Europe, these do not give any
value to the evaluation. In our opinion, knowing that Bob has trust for Time
of Day alone, does not tell anything about his trust to that time. In this case
we need to dig deeper into the hierarchy for data that gives information,
like Before work hours, After work hours and During work hours.

Figure 5.14: Bob’s trust that will be used in the simulation of this thesis

Cathrine

Figure 5.15 shows Cathrine’s profile. Cathrine is a more open person than
Bob, which means that a lower trust level is required to gain access to her
user profile. Note that information that are more secure in nature, like
Payment has a high security level for Cathrine as well.

Figure 5.15: Cathrine’s profile that will be used in the simulation of this
thesis

Cathrine is also a more trustworthy person. She trusts her surroundings
more, as illustrated in figure 5.16.

58

Figure 5.16: Cathrine’s trust that will be used in the simulation of this thesis

5.3.5 Expected results

This section will analyze the users trust that is relevant based on the
context in figure 5.7, where an assumption is made that Bob and Cathrine
want suggested places to eat and is open for meeting people in their
social networks. Our assumption is that it would make sense to use
different contextual information when requesting different information
from the users profile. We choose to use this generalized context for
it to be easier to keep focus on the core part of the implementation,
context-aware authorization. This section first presents the relevant trust
attributes for each user based on the context, followed by a calculated TL
for the requesting service and what information that will be returned to the
requesting service.

Figure 5.17 shows Bob’s trust attributes that is relevant for this
simulation. The same is done for Cathrine in figure 5.18.

Trust level will now be calculated based on these selected trust
attributes.

TLBob =
1
n

n

∑
n=1

ai =
1
7
(0.8 + 0.8 + 0.8 + 0.5 + 0.5 + 0.4 + 0.4) =

4.2
7

= 0.6

TLCathrine =
1
n

n

∑
n=1

ai =
1
7
(0.8+ 0.8+ 0.8+ 0.7+ 0.7+ 0.7+ 0.8) =

5.3
7
≈ 0.76

As shown from the above result, Bob’s trust attributes delegates a TL
of 0.6 to the requesting service. Cathrine is much more trustworthy and
delegates a TL of approximately 0.76. Figure 5.19 and 5.20 shows what
information that is returned to the requesting service for these two users.
As illustrated here, Bob is more secure and does only return part of his

59

Figure 5.17: Bob’s relevant trust attributes to the context information that
is sent from the requesting service in the simulation of this thesis

Figure 5.18: Cathrines’s relevant trust attributes to the context information
that is sent from the requesting service in the simulation of this thesis

food preferences. For Cathrine all food preferences are returned, as well as
information about social networking.

60

Figure 5.19: Information that is sent back to the requesting service of Bob’s
user profile in the simulation of this thesis

Figure 5.20: Information that is sent back to the requesting service of
Cathrine’s user profile in the simulation of this thesis

61

62

Chapter 6

Implementing access control

6.1 Introduction

Thus far we have talked about our problem statement, created a general
scenario and a detailed scenario for our users, Bob and Cathrine. They
are both registered users and each have separate profile, though with the
same set of preferences, but with a different security requirements to their
profile. The scenario of these two users is that they arrive at Gardermoen
Airport in Oslo, Norway, and have time to spare before their flight leaves.
We will provide these two users with options of what they can do with their
spare time, based in preferences used in their store profile. With different
security settings, both within their user profile and trust to their current
environment, they will have different results to what will be displayed to
them om a public screen.

We have also talked about how we can create such an implementation,
with requirements to profile storage, how users can secure their profile and
limit access to this profile, based on the users current context. We chose
to use a cloud service to store the users profile and added policies to their
information, which can be maintained by the users themselves. How the
services the users encounters can get access the users profile based on their
current situation.

In this chapter we will describe the implementation in detail, by
following each step from where a food service provider sends a request
for the users food preferences and until the service provider has been
authorized access to the profile and is finally provided with that authorized
food information.

6.2 Changes along the implementation

Earlier we made a selection on technologies and tools we would like to
use in our implementation. Along the way of implementation we wither
encountered issues that we were unable to solve by using these selected
technologies and tools, or in some cases they did not meet our expectations.
In this section we will go into detail about these changes throughout the
implementation of this thesis.

63

6.2.1 Policy and policy language

In section 4.2.5 we stated that WS-Policy would be the best choice for
our implementation, primarily based on the fact that this policy language
was available through Microsoft framework (WSE) and the integration
with our development environment. After trying to create the policy
implementation using this language, we found that WS-Policy in the WSE
framework was mainly used for better security between web web services
and not for securing the actual data. WSE policies actually provides better
security in addition to SSL. These are XML encryption, roles, certificates
and so on. In addition to this it was not available off-the-shelf in VS2012.
Here we ran into technical difficulties where we had to manually configure
the development environment to make the tool use able.

So after discovering that WS-Policy was not an option for our imple-
mentation, we needed to take a closer look at our options, which was
XACML. XACML is a flexible policy language where policies and sets of
policies can be created, consisting of match criteria, specific resource, and
what access fulfilling the criteria gives, whether it be write or read. Re-
quests can also be created by specifying the same criteria as the policies
and if the request and the giving policy match, access will be granted.

From what we found later on and during our research phase, we had
two options, XACMLNET1 and Axiomatics Policy Server (APS)2, which are
both based on XACML. XACML.NET is a Microsoft .Net framework, which
provide functionality for writing, reading XACML policies and policy sets,
reading and writing requests, as well as evaluating requests against these
policies. APS is a enterprise software used for simple and complex XACML
policies, with user interface both for the policy server and the software
for creating policies, as well as framework for writing your own policy
evaluator.

As our task was not to create a XACML implementation, we contacted
Axiomatics, which was happy to provide us with a developer edition of
their APS. We soon realized that this did not go as good as we had planned.
Axiomatics was pretty busy, and was not able to help us as much, and
along with insufficient documentation we realized that using this software
would take up too much of our time. At this point we had to either create
our own framework to use with XACML or use XACML.NET. The thing
about XACML.NET is that is had not been updated since 2005, and when
we tested small parts of that framework during our research phase, the
framework was not able to read the policies it had created itself, in other
words it was useless, and the site to where we could download the source
code was taken offline.

Fortunately, jetBRAINS, a company that, among other things, creates
tools for .Net development, has created a tool called DotPeek3 that can
be used to decompile .Net compiled code. This year, they also released

1http://mvpos.sourceforge.net/, accessed September 2013
2https://www.axiomatics.com/axiomatics-products-overview.html, accessed Septem-

ber 2013
3http://www.jetbrains.com/decompiler/, accessed October 2013

64

DotPeek version 1.1 which is able to decompile code to a Visual Studio
project. We decompiled the XACML.NET source code and made alterations
to suit our needs of creating policies, policy set, requests and evaluate these
requests against each other. Out-of-the-box, the XACML.NET framework
was a bit complex to work with, so we also created a policy engine on
top of this framework to simplify some of the operations, like writing and
evaluating policies.

A more detailed description of how this policy engine operates and fits
into our implementation will be covered in section

6.2.2 Implementing a cloud service using OData

We knew early on in this thesis that we were going to use Microsoft’s
Open Data Protocol (OData) and our research showed that we had one
option of using such an implementation. We first set up our database
either by defining the structure of the database with programming classes
or by creating the database first and then import the database in our
development project. After this was done, we could expose the data with
the following options:

1. Expose entities4 statically.

2. Expose entities statically and write semi-dynamic queries on what to
expose.

3. Expose data by using operations and actions that uses input to create
more dynamic data retrieval.

Throughout the implementation we realized that the off-the-shelf
implementation had several shortcomings to what we wanted to achieve
in our implementation. First of all we discovered that OData off-the-shelf
had an open approach, meaning that, by default it exposes all the data.

1 publ ic c l a s s CoudDataService : DataService<DataContext>
2 {
3 publ ic s t a t i c void InitializeService (DataServiceConfiguration config) {
4 config . SetEntitySetAccessRule (" Users " , EntitySetRights . AllRead) ;
5 config . DataServiceBehavior . MaxProtocolVersion = ←↩

DataServiceProtocolVersion . V3 ;
6 }
7 }

Listing 6.1: Example for exposing user entities with off-the-shelf OData
product

The above figure shows an example on how to set access rules to
entities, where in this case we say that we have read access to all users
in the system. If we were to limit what users that are shown, we would

4Entity is a object that contains data, i.e. Employee, Order,
http://www.odata.org/documentation/odata-v2-documentation/overview/, accessed
October 2013

65

have to scale down to that specific user. We believe that this is a security
risk in itself by assuming that we have access to everything, and have to
prove otherwise, instead of vise versa. Also, our proposed system has a
front end where users are able to update information about themselves
and their entities, which means that not only do services need read access,
they also need update, or even write access in some cases. If the system
by default assumes that requesters have this kind of access by default and
this has to be scaled down, we view this as a critical flaw in the software.
And unfortunately there is no way of setting these entity access rights
dynamically.

We thought that we might be able to solve the issue of "access by
default" by using actions and operations. That way we could force
requesters to prove that they have access to this user and that part of the
profile, and then return them that way. Unfortunately, these actions and
operations is only functionality in addition to the already exposed data. An
example here would be to create an operation that gets information about
Bob based on a set of parameters we pass to this operation. However, this
is not an issue that cannot be solved by using custom HTTP headers to be
used in semi-dynamic queries.

Our conclusion of using off-the-shelf OData is mainly to publish data
you want to expose on the web in an easy way. We partly knew that
this is the core idea of OData, but we assumed that this behavior could
be manipulated in the way we wanted. It does not provide the dynamic
functionality we needed, and in our opinion, provided a set of "back doors"
that needs to be closed manually, which we believe is close to impossible5

After further research we found the OData Web API6, which is used
to create an OData service from scratch, with nothing implemented by
default, and we can specify what functionality we want, rather then specify
what we do not want. We have in this case not made a full OData
implementation using this API, since this is not essential for this thesis,
and can be considered to be a thesis of its own. We have however through
the implementation made some observations to what impact this can have
on the development process and some we consider being some of the
shortcomings when implementing a OData solution based on the API.

We believe that using the OData Web API has impact the development
progress on both the client side and server side. By using the OData
Web API we need to implement the OData functionality we need from
scratch, which takes a lot of time. OData features we will need for this
implementation is to expose the data itself, once it it authorized to be
exposed, navigation between the exposed data as well as actions that can
be used by clients, in our case used to authize profile access. The client will
also suffer from an OData Web API implementation. Rather than talking
with a service, the client will have to serialize and deserialize request and
response, because with a API implementation, the the OData provider will

5http://www.mcafee.com/us/resources/white-papers/foundstone/wp-pentesters-
guide-to-hacking-odata.pdf, accessed October 2013

6http://www.asp.net/web-api/overview/odata-support-in-aspnet-web-api, accessed
October 2013

66

be an application, rather than a service. We will go into detail about our
server and client implementation in section ?? but will show an example,
how the off-the-shelf OData and the API implementations are different
from a clients point of view.

1 HttpClient client = new HttpClient () ;
2 client . BaseAddress = new URI " ht tp :// l o c a l h o s t :53984/ odata/") ;
3

4 var response = client . GetAsync (" Users ") . Result ;
5 Console . WriteLine (response . Content . ReadAsStringAsync () . Result) ;

Listing 6.2: Client implementation for how to request user entities form
OData service implemented using the OData Web API

1 {
2 " odata . metadata " : " http ://localhost :53984/ odata/$metadata#Users " , "←↩

value " : [
3 {
4 " Id " : 1 , " FirstName " : " Bob "
5 } , {
6 " Id " : 2 , " FirstName " : " Cathrine "
7 }
8]
9 }

Listing 6.3: JSON response for user from service implemented using OData
Web API

Code example 6.2 shows a small example on how to get all users from
a OData Web API implementation and code example 6.3 shows what the
request from such an implementation. Notice that what we retrieve from
the API implementation is raw data that we need to serialize to objects
before we can make further use of them programatically.

1 var cloud = new Cloud . CloudContext (new Uri (" http ://localhost :50668/ OData .←↩
svc/")) ;

2 var users = cloud . Users ;
3

4 foreach (var user in users)
5 {
6 Console . WriteLiine (" { 0 } : { 1 } " , user . Id , user . Name) ;
7 }

Listing 6.4: Client retrieving all users form off-the-shelf OData service and
printing names

1 1 : Cathrine
2 2 : Bob

Listing 6.5: Output from OData off-the-shelf client

As we can see from figure 6.4 it has the same amount of code as the API
client, however, this code is already serialized into an object. The OData
service reference also comes with class descriptions and does the serializing

67

for us. Even though these two examples has the same amout of code, in
our last example, the class is already serialized into an object description
the service also provides us with. As we can see from listing 6.5 in contrast
to code example 6.3, these values comes directly from the object and are
useable. We will not go into further detail about this but would only like
to mention that navigation properties from the object, User in this case, is
directly available through the programatic access in the entities.

6.3 Implementation

This section will address the implementation step-by-step according to
figure 6.1. The process will start from the requesting service point-of-view
by constructing a request and sending this to the cloud. The cloud will
process this request by first evaluating and calculating the Trust Level for
the requesting service. The delegated TL will be evaluated against the
Profile Attributes Security Attribute, and if the TL is greater than or equal to
the TL, that PA will be part of the response message. The response message
will be constructed, containing the authorized PA’s and the message will
be sent back to the requesting service. The cloud service is divided into
two main components as shown in figure 6.1. The message engine is
responsible for communicating with services that requests information
from user profiles. The evaluation engine is responsible for authorization
of the requesting service to the user profile.

Figure 6.1: Flow chart for process when service provider request informa-
tion about users food preferences and receives part of user profile

68

6.3.1 Send service request

Referring to the flow diagram in figure 6.2, marked with a bold border, is
the process that will be covered in this section, namely the construction and
sending of a request from the requesting service.

Figure 6.2: Flow chart shows how the implemented framework builds a
request for requesting information about users food preferences

The message constructed by the requesting service contains two parts,
the request itself and the context information, where the request is the
information the requesting service would like to retrieve from the user
profile and the context information being the context gathered from the
users mobile device.

Figure 6.3: How the request is built up by dividing a URI into cloud address
and service address

As shown in figure 6.3, the request part of the message consists of
a URL. OData, whether it uses the OData Web API or the off-the-shelf
solution, both of these options is a web service. Communication between
the cloud and the requesting service is done over the HTTP protocol[16],
and is followed by the address and port this server is set to respond to (in

69

blue). We choose to keep the option open for creating a profile management
front-end in the cloud and has therefore created a route odata which is the
part of this web service the other requesting services will communicate
with. The next part of the URL is the service we are requesting (green),
which is also the most essential part of the URL that will be changed for
each request.

We stated early on in this thesis that the OData protocol lives true to
the name. It is mainly used for open data, which means that passing
parameters for each request is not trivial. However, for open data it
is. OData comes with a module called query options which provides the
requester the ability to filter the data as they see fit. Unfortunately for this
implementation, these query options uses the argument part of the URL
i.e. odata/UserLikesFoods?$top=10 which rules out this usage and using these
query options from the client is not a valid option, simply because this has
to be done by the service itself and not the user. We still have to enforce
this because we want to send contextual information as well as the request
itself. To our knowledge, there are two options for passing the context
parameters with the URL, using an OData action or via HTTP headers. The
following tables present what we consider being the main pros and cons of
either of these approaches, followed by an analysis of these and will finish
off with a selection of approach.

Action

Good Bad
Fully uses ODatas potential POST message
Strongly typed data parameters Breaks the semantics
Parameters is part of the main request

HTTP headers

Good Bad
GET message Have to step outside the usage of OData protocol
Keeps semantics in tact

The above tables show that using actions has a clear disadvantage. First
of all, by using actions to pass contextual information as parameters results
in that a POST[16] request needs to be done. The purpose of a POST request
is to submit information or change the state of data in a service, this is not
what what this cloud is supposed to do. Requesting services should only
retrieve information from the cloud at this point. However if the requesting
service in future work should add information to the cloud, POST should
be used. So for retrieving information from the user profile, GET should be
used.

One other thing that is good about using these HTTP headers is that
it keeps the navigation properties in tact, which we consider to be impor-
tant. An example is that by using actions the request URL needs to contain
the function name, i.e. odata/UserLikesFoods/FunctionName. As mentioned

70

above actions are not made for GET requests, which means that by pro-
viding such a request URL, navigation like odata/UserLikesFoods/Function-
Name(1) for retrieving the first record of the returned data does not exist,
and even if it did, it conflicts with the purpose of the HTTP protocol.

The bad thing about using HTTP headers is that we have to step outside
the OData protocol in order to use it for this specific purpose and actions
provide strongly typed data, which means that whatever object or data
structure one chooses to use as parameter can be user. However, by
weighing these two against each other, we feel that the cost of strongly
typed parameters are worth stepping outside the protocol by using HTTP
headers. By doing this, we maintain the clean request URL’s, semantics and
avoid fighting the purpose of the HTTP protocol.

Figure 6.4: Request header with context information for requesting
Cathrine’s food preferences

A typical request for this implementation this implementation is
illustrated in figure 6.4. We have chosen to simplify the context from
being semantically structured to a key value pair because the main part of
the implementation is the authorization process and these data are stored
in a MSSQL database, which is a rational database where each table is
attached to a class and object represents one row and the main part of
the implementation is the authorization. An alternative would be to create
one header with JSON7, deserialize this to an array and run the path on
a another OData service hierarchically, but we feel that this sidetracks too
much with this implementations original purpose.

6.3.2 Evaluate trust

This section covers the next step in the process, as illustrated in figure 6.5,
which is processing the request and calculating the TL which is to be

7http://json.org/, accessed November 2013

71

delegated to the requesting service for this request.

Figure 6.5: Flow diagram showing where in the request process trust level
is calculated

The last paragraph in the previous section describes the request and
how and why it has been simplified into key value pairs. A part from this,
the implementation keeps true to its original purpose where it looks at the
TA’s TAV and calculates the average of these set of numbers into TL that
can be evaluated against each of the PA hierarchy in the users profile.

Figure 6.6 illustrates an entity model of a users trust structure. The
entity model is a hybrid between a relational database model and a
class diagram. It describes the class/table name, properties/columns
and foreign keys/relations between these. Entity Framework (EF) is
the Microsoft Framework that creates this schema which provides the
programmer with the ability to solely focus on programming with the
classes and removes the concept of the actual database.

1 var placeStatusTrust = (double)
2 (from p in context . UserHasPlaceStatusTrusts
3 where p . Place . Name . Equals (place) && p . UserId == userId
4 s e l e c t p) . FirstOrDefault () . TrustLevel ;

Listing 6.6: Getting trust for a users place relation

Code example in listing 6.6 shows an example of how to retrieve the
users place relation to the actual place. In this example the we wish to
retrieve the trust level for a specific place related to the user. When when
the TAV for all TA’s for that user in the current context is retrieved, the

72

Figure 6.6: Entity model of how trust is structured in the cloud

average of these are computed and returned back to the message engine in
the cloud.

73

6.3.3 Authorize access to the user profile

This section describes how the evaluation engine in the cloud authorizes
access to the specific parts of the user profile. This authorization process
will make use of the delegated TL for the requesting service, requesting the
users food preferences. The part of the flow diagram that this section will
cover is marked by bold borders in figure 6.7. We will start by describing
how the user profile is structured, how the SA’ are structured and attached
to each PA, and will finish off with how authorization is given for these
PA’s.

Figure 6.7: Flow diagram showing processing request and authorizing
access to the user profile

Much like section 6.3.2 describes how context trust is structured,
the profile is has the same basic structure. The profile is also created
programatically by using EF, which creates the entity model illustrated in
figure 6.8. The figure however does not imply anything about the security.
The enntity model is just a way of having a common understanding
between the code and database.

Security is achieved in collaboration between OData entities and
XACML policies, which in terminology of this thesis are respectivly PA
(OData) and SA (XACML). Each PA has a SA attached to it, where the PA
is identified by a unique URI. To clearify we will describe the structure of
the policies and how they are attached to the PA in order to become a SA.

The structure of the policies are done hierarchically to keep true to the
hierarchical structure of the user profile. This functionality could in theory
be achieved by using hierarchical resources in XACML[3], but in addition

74

Figure 6.8: Entity model of how the profile is structured in the cloud

to that the SA can vary through the hierarchy and our selected framework
for working with XACML policies, XACML.NET does not support this,
we decided to use a hierarchical catalogue structure. What this structure
means in practice is that the policy describing access to food preferences
needs to be authorized before each of the food preferences like sushi and
pizza.

Listing 6.7 shows a snipplet of Bob’s policy for PA food preferences.

75

1 <?xml version=" 1 . 0 " encoding=" utf−8" ?>
2 < P o l i c y S e t xmlns=" urn : o a s i s : names : t c : xacml : 1 . 0 : po l i cy "
3 P o l i c y S e t I d =" p o l i c y S e t "
4 PolicyCombiningAlgId=" . . . : rule−combining−algorithm : deny−overr ides ">
5 <Descr ipt ion >description</Descr ipt ion >
6 <Pol i cy Pol i cy Id=" LikesFood (1) " RuleCombiningAlgId=" . . . : deny−overr ides "←↩

>
7 <Descr ipt ion > . . . < / Descr ipt ion >
8 <Target >
9 . . .

10 </Target >
11 <Rule RuleId=" . . . " E f f e c t =" Permit ">
12 <Descr ipt ion >description</Descr ipt ion >
13 <Target >
14 <Sub jec t s >
15 <Subject >
16 <SubjectMatch MatchId=" urn : o a s i s : names : t c : xacml : 1 . 0 : func t ion :←↩

double−l e s s−than−or−equal ">
17 <Attr ibuteValue DataType=" ht tp ://www. w3 . org /2001/XMLSchema#←↩

double " >0.5</ Attr ibuteValue >
18 < S u b j e c t A t t r i b u t e D e s i g n a t o r A t t r i b u t e I d =" urn : o a s i s : names : t c←↩

: xacml : 1 . 0 : s u b j e c t : s u b j e c t−id " DataType=" ht tp ://www. w3←↩
. org /2001/XMLSchema#double " SubjectCategory=" urn : o a s i s←↩
: names : t c : xacml : 1 . 0 : s u b j e c t−category : access−s u b j e c t " ←↩
MustBePresent=" t rue " />

19 </SubjectMatch >
20 </Subject >
21 </Sub jec t s >
22 <Resources >
23 <Resource >
24 <ResourceMatch MatchId=" urn : o a s i s : names : t c : xacml : 1 . 0 : func t ion←↩

: s t r i n g−equal ">
25 <Attr ibuteValue DataType=" ht tp ://www. w3 . org /2001/XMLSchema#←↩

s t r i n g ">UserLikesFoods (1) </Attr ibuteValue >
26 <ResourceAttr ibuteDesignator A t t r i b u t e I d =" urn : o a s i s : names :←↩

t c : xacml : 1 . 0 : resource : resource−id " DataType=" ht tp ://←↩
www. w3 . org /2001/XMLSchema# s t r i n g " MustBePresent=" f a l s e←↩
" />

27 </ResourceMatch>
28 </Resource >
29 </Resources >
30 <Actions >
31 <Action >
32 <ActionMatch MatchId=" urn : o a s i s : names : t c : xacml : 1 . 0 : func t ion :←↩

s t r i n g−equal ">
33 <Attr ibuteValue DataType=" ht tp ://www. w3 . org /2001/XMLSchema#←↩

s t r i n g ">read</Attr ibuteValue >
34 <Act ionAttr ibuteDes ignator A t t r i b u t e I d =" urn : o a s i s : names : t c :←↩

xacml : 1 . 0 : a c t i o n : act ion−id " DataType=" ht tp ://www. w3 .←↩
org /2001/XMLSchema# s t r i n g " MustBePresent=" t rue " />

35 </ActionMatch>
36 </Action >
37 </Actions >
38 </Target >
39 </Rule>
40 </Policy >
41 <Policy >
42 . . .
43 </Policy >
44 </Pol i cySet >

Listing 6.7: Slipplet of Bob’s policy for defining access to food preference
sushi

Listing 6.7 shows a snipping of the policy set that is attached to Bob’s
food preferences, in this case the food preference, sushi. The below list will

76

describe the policy in more detail, and especially, where PA and SA fits in.

2 PolicySet: Start tag for Bob’s policy set.

4 PolicyCombiningAlgId: Means that the rule needs to be fullfilled,
and no other rules can override it.

6 Policy: Start of a new policy for Bob’s food preference, sushi.

11 Rule: The policy rule that needs to be fullfilled, and if so this leads to
permitting access.

14 Subject: This is the SA that will be evaluated against the incoming TL
of the requesting service. If the TL is greater than or equal to the SA,
access to the PA attached to this policy will be granted.

23 Resource: The PA which this policy is defined for, in this case
UserLikesFoods(1) (sushi).

31 Action: What action is permitted if the requirements are met, in this
scenario, read access.

When the process reaches the point where access to food preferences is
to be authorized, the TL is available and the evaluation engine will start
to try and authorize access to the PA’s. This is an iterartive process where
access the TL will first be evaluated against the food preferences PA, and if
authorization is permitted it will move further down the hierarchy to the
children. For simplicity sake we have in this implementation only created
food preferences with two children.

Since this is the most complicated part of the implementation, we have
provided a somewhat simplified code example in listing 6.8 followed by a
description of what each of these lines do.

77

1 publ ic overr ide IQueryable<UserLikesFood> Get ()
2 {
3 var userLikesFoods = from u in context . UserLikesFoods
4 where u . UserId == user
5 s e l e c t u ;
6

7 //PA ' s to output to request ing s e r v i c e
8 List<UserLikesFood> output = new List<UserLikesFood > () ;
9

10 //Evaluate food p r e f e r e n ce s PA
11 i f (PolicyEvaluator . EvaluateParent (user , trustLevel , resource))
12 {
13 //Loop through every PA and evaluate po l i cy
14 foreach (var userLikesFood in userLikesFoods . ToList ())
15 {
16 i f (PolicyEvaluator . Evaluate (user , trustLevel , resource ,←↩

userLikesFood . Id))
17 {
18 output . Add (userLikesFood) ;
19 }
20 }
21 }
22 re turn output . AsQueryable () ;
23 }

Listing 6.8: Getting trust for a users place relation

1 Method name user to identify the UserLikesFoods-part of the request
URL

3 Get all food preferences for user Bob as a list

8 An empty list that contains all potential food preferences to return.

11 Evaluate the food preferences PA against TL delegated to the
requesting service.

14 If access is granted to the food preferences PA, evaluate access to sushi
and pizza PA.

16 If access is granted to sushi and/or pizza PA, add them to the list
which should be returned to the requesting service.

22 Return the list of authorized foor preferences.

Once the evaluation engine has evaluated authorization to the users
food preferences, the authorized part of the semantically structured user
profile will be returned to the requesting service.

6.3.4 Respond with authorized user profile

When the cloud has authorized part of the user profile from our example
request, in our case food preferences, is returned to the requesting service.
This section will cover the returned response, as shown in figure 6.9, a
response to the requesting service with authorized parts of the user profile.
This section will also cover how to browse the returned semantic data
structure.

78

Figure 6.9: Flow diagram when a reequesting service receives a response
with authorized parts of a user profile

The raw data returned to the requesting service is a list of the PA
nodes within a specific level, with links to other data. This means that
the semantic structure of the user profile is not all returned at once. An
example is illustrated in listing 6.9, where food preferences of sushi and
pizza is returned to the requesting service.

1 {
2 " odata . metadata " : " http ://localhost :53984/ odata/$metadata#←↩

UserLikesFoods " , " value " : [
3 {
4 " Id " : 5 , " FoodId " : 1 , " UserId " : 2
5 } , {
6 " Id " : 6 , " FoodId " : 2 , " UserId " : 2
7 }
8]
9 }

Listing 6.9: Example of returned food preferences for Cathrine as JSON

As we can see, the returned PA’s for food preferences with Id 5 and
6 does not tell the requesting service if the food with FoodId is sushi or
pizza. There are two ways this problem can be solved, either by having
knowledge about these Id’s in the stored in the cloud, or by providing
metadata to services that communicate with the cloud about the meaning
behind these data. This implementation has enabled metadata for this
purpose.

79

1 <EntityType Name="UserLikesFood ">
2 <Key>
3 <PropertyRef Name="Id " />
4 </Key>
5 <Property Name="Id " Type="Edm . Int32 " Nullable="false " />
6 <Property Name="FoodId " Type="Edm . Int32 " Nullable="false " />
7 <Property Name="UserId " Type="Edm . Int32 " Nullable="false " />
8 <NavigationProperty Name="Food " Relationship = " " ToRole="←↩

Food " FromRole="FoodPartner " />
9 <NavigationProperty Name="User " Relationship = " " ToRole="←↩

User " FromRole="UserPartner " />
10 </EntityType>

Listing 6.10: Metadata information about food preferences PA
(http://localhost:53984/odata/$metdata)

The way OData solves the relationshops between the data, like FoodId 1
is actually Sishi, is by using navigation properties. As shown in listing 6.10,
the metadata contains information about what how to reach the actual food
type or user for a specific food preferende. The following list will explain
the meaning of the metadata further.

1 What entity, or PA this metadata applies to.

2 Food preferences are identified by an Id in the provided URI.

5-7 What information that this PA contains. These data are also strongly
typed to be able to deserialize the JSON data.

8 Navigation property for food related to this food preference, and how
to reach it.

9 Navigation property for user related to this food preference, and how
to reach it.

Figure 6.10: The cloud for information about the food in food preference 5,
which is Cathrine’s food preference of sushi

Fidgure 6.10 illustrates an example of how these navigation properties
can be used. As mentioned in section 6.3.1, the blue part of the URI is
used to identify the cloud server and the green part is user to identify the
food preferences service in the cloud. The red part of the URI however tells
the cloud that we are searching for food preference 5, which is Cathrines

80

food preference, sushi, and that we would like to know what that food
preference is. The result of this request is illustrated in listing ?? and shows
that the returned result is sushi. The requesting service now know that
Cathrine has a food preference of sushi, and can use this information with
other open data stores to show the user suggested places to eat. This is the
context aware user profile.

1 {
2 " odata . metadata " : " http : / / . . . / odata/$metadata#Foods/@Element " , " Id " : 1 ,←↩

" Name " : " Sushi "
3 }

Listing 6.11: Returned result to the requesting service when requesting
more information from Cathrine’s food preference

These navigation properties has been been created with the implemen-
tation and is created as shown in listing 6.12

1 publ ic Food GetFood ([FromODataUri] i n t key)
2 {
3 serLikesFood u = context . UserLikesFoods . FirstOrDefault (f => f . Id ←↩

== key) ;
4 re turn u . Food ;
5 }

Listing 6.12: Example of how to create navigation property between a food
preference and the food description

6.3.5 Implementation result

in this chapter we have created a detail description of the implementation
and the process from where a requesting service requests food preferences,
how access to the users food preferences are authorized and the the
authorized part of the user profile is sent back from the cloud. With the
implementation covered in detail, we will move over to chapter 7 where
we evaluate the approach of this thesis, the implementations scalability,
privacy and security. We will also evaluate the selected technologies
for the implementation and different choises that could have been made
throughout the thesis and how this would impact the result.

81

82

Chapter 7

Evaluation

7.1 Approach

We are overall happy with our approach throughout this thesis. We chose
to start with a scenario where a user walks into an airport, has time
to spare before the flight leaves, and will present the user with useful
information, related to their contextual information and preferences in the
cloud. We chose to focus on the security part of this scenario, where users
place a required security level on their on the policy attached to their
individual information in the profile. We also chose to create a context-
aware authorization model which services that require access to the users
profile, need to gather this information from the users environment and
authorize access to specific parts of the profile. Knowing that there were
similar research involving this topic, and implementation, we chose to
base our research on Microsoft technologies because Microsoft is such a
big part of the enterprice world, and wanted to evaluate how this platform
could cope with such an implementation using only technologies from this
platform.

We are also quite happy with our research phase throughout the thesis.
We spent most of our research effort on how contextual information
information can be related to applications and security, concerning both
authentication and authorization. Most of the research were able to retrieve
involved how to evaluate contextual information through policies and how
these policies can be linked to stand-alone resources, relational databases
and semantic data structures. Before we started working on this thesis
we had some experience with most of the .Net framework and Microsoft
applications that has been used, but most research involving Microsoft
technologies has been spent on the Open Data Protocol (OData) and policy
languages available from this platform.

However, we had to change our approach during the implementation
phase of the thesis, because we did not put enough effort on policy and
OData research. We felt that we had a good foundational understanding of
how Microsoft operates and when we therefore stumbled upon both OData
and their policy language, WS-Policy, we thought this was a safe selection
of technologies. Unfortunately off-the-shelf OData and WS-Policy, was

83

not what we expected when we started the implementation. We then
had to stop our implementation phase and re-evaluate these choices of
technologies. This resulted in a setback where we had to spend time
going back and forth between the implementation and research phase. The
change in this selection of policy language and OData implementation is
covered in more detail in section 6.2. At the start of the implementation and
partly because we chose the OData Web API in the implementation phase
was because this enabled us to pass arguments with the request, what we
realized while doing this was that this had to result in a POST message,
and it broke the semantics. Therefore we also had to backtrack to our first
idea and stick to using HTTP headers in with the request in order to send
context information.

7.2 Implementation

Our implementation consist of the authorization process to a user profile,
based on a request from a requesting service, which contains contextual
information. We will evaluate our implementation considering scalability,
security and privacy. We view these three as the most important parts
of our implementation where scalability is the ability to expand on our
implementation, security on how secure we view our implementation and
privacy, where we considers the users privacy, and finally conclude on our
implementation based on these evaluations. We will start by evaluating the
scalability of our implementation.

Scalability

Our OData Web API implementation is what we view as the most scalable
part of our implementation. The OData, which a front end for the database
to display the data semantically, is implementing OData API interfaces,
and most of these operations consist of few lines of code and is easy
to edit and change behavior. We have tried to keep true to the OData
structure as best as we can, and we feel we have managed that quite well.
We also feel that the scalability of our policies is quite good. We have
made extensions to the XACML.NET framework, but only just to make
it work to both write policies, policy set, requests and evaluate. Therefore
it remains in tact and is able to interpret all of the XACML math functions,
multiple actions, subjects, resources as well as environment and override
algorithms. We chose to put our own evaluation engine on top of this
XACML.NET framework in order to simplify some of it’s behaviors. This
Evaluation engine can easily be changed to fit other needs. This means
that by changing the evaluation engine and stick to using the XACML.NET
framework or creating an own evaluation engine, one has all the abilities
of XACML evailable.

We believe that the main challenge of scalability in our implementation
lies in the selection of storage regarding the the user profile and trust
attributes. These are stored as a relational database, where each table

84

has a corresponding class in the implementation. In order to extend
functionality, one has to create a new table and a corresponding class.
This leads to further work, where the database in worst case needs to
be dropped and re-created with existing user data. There are however
possibilities to create an own data store structure, which can be made
compatible with Entity Framework (EF) by implementing an interface.

What we evaluate as the less scalable of the profile and trust is that,
in the time of writing, the context attributes is evaluated statically, where
each attribute is fetched from the request and evaluated. There is need for
a more dynamic evaluation process of the trust attributes for it in order to
be more scalable.

7.2.1 Security

We assume that trust and certificates is established between the requesting
service and the cloud, and we do not consider security in firewalls etc. We
think that security on an application level of our implementation is quite
good. If the requesting service sends context information that the user has
no relationship to, these will be ignored. We hare however aware of that
this can lead to too much security. If a user has no relationship to a certain
context attribute this can lead to a significant more lower trust level of the
requesting service intended. Also, there is no data integrity check on the
data provided by the requesting service. This means that in practice, the
requesting service can send any information it wants to the cloud. For
example, if the user is in The Democratic Republic of the Congo, which
the user has defined with a trust level of 0.1, the requesting service can
send context information of Country=Norway, which can lead to a much
higher security level, on the other hand, if the user has no relationship with
Norway, this attribute will be considered irrelevant. The requesting service
cannot be evaluated as a request from Cathrine and use this trust level in
order to get Bob’s profile information. Both the contextual information and
the requesting user is sent in the same request. And the same userId will
be used for both of these processes.

To infiltrate policies which is stored on the file system, or needs
administrative access to this server.

7.2.2 Privacy

We think it is hard to evaluate on the privacy, because the responsibility
solely relies on the user. The user defines their trust of different contexts
and set security levels on their profile information. However, we believe
that there might be a need for a plan B. For example, if users chooses to set a
security level of 0.1 on their payment information, we think that the system
should react to such actions to "protect the user from itself" by providing
help or guidelines, maybe even a threshold for certain kind of data. We will
cover this future work in more detail in section 8.4.

85

7.2.3 Conclusion

Based on the above evaluations on Scalability, Security and Privacy, we will
give a score to each of these with a conclusion on what is the best part of
our implementation and what needs more work. Score for each of these
will be given between 1 and 5.

Scalability Security Privacy
4 3 3

We have given scalability a score of 4 because it keeps true to the
scalable setup of OData and the selection of storage is more difficult to
expand or improve. Privacy with a score of 3 because the system does not
give access across profiles with other users trust attributes, but it does not
have data integrity check. Privacy has been given a score of 3, because it
gives the user the ability to secure their data the way they see fit, but we
believe there is a need of system action to help the user to protect itself from
setting too low security threshold on information about themselves that is
more secure in nature. We are however aware that this is also a matter of
opinion.

7.3 Technologies

In this section we will talk about the technologies that was selected for
implementing a context aware authorization model and evaluate how these
were able to help us achieve our goal.

We wanted to return the authorized user profile semantically to the
requesting service, which OData does a good job of doing. This is one of the
core functions of OData and is pretty straight forward to implement even
with the OData Web API that we have selected for this implementation,
although it takes some time to get into the idea of how the protocol works.

The most challenging part of the implementation was how to help
OData and XACML to collaborate. In our implementation we decided to
create the profile structure hierarchically according to the structure of the
user profile, where a OData resource is linked to an XACML policy. This
approach in itself is a good idea, but from our knowledge, there seems to
be no intuitive way of putting this logic into practice in the cloud service.
By keeping to the strict guidelines of the OData interface and at the same
time having to evaluate the policies, this tent to require some solutions that
is viewed by us to be workarounds. An other approach could be to store
the policy name along with the OData entities, but to us this seems illogical
because the policies in XACML defines the resource, in our case the OData
entity, and for us it was the logical step to keep this as part of the policy.

As we mentioned in our implementation in section 6.3.1, by using the
OData Web API, there is no intuitive way of sending context information
information with the request to an OData service. OData is a web service
and is therefore restricted to the usage of the HTTP protocol and with HTTP
GET only being the viable option and GET parameters reserved for other

86

purposes, such as query options, only headers remain for sending context
information. These headers are key/value stores which limits how the data
can be passed with the request. A solution for this could be to send the
key/value as JSON data string and deserialize this string to objects in the
code.

87

88

Chapter 8

Conclusions and future work

The goal of the thesis is to look at context-aware access control and how it
is linked to semantically structured data in a business context, as supplied
through the OData framework. The use of context-aware authorization
mechanisms answers the need for a granular access system, where the
traditional false/true authorization mechanisms are no longer sufficient.
As an easy-to-catch scenario, we chose a travel scenario providing the user
with context-aware and personalized information. The scenario takes place
in an airport where the users has time to spare before their flight leaves and
wants to get suggested places to eat and known people to interact with.
This is done by having the users mobile device connect automatically to a
hotspot and sends the context information to a service that will request
relevant information from the user profile stored in the cloud service.
We focused on the authorization part of the scenario, to implement a
context-aware authorization model in enterprise systems, using as much
as possible enterprise oriented solutions.

We achieved this functionality through a semantically structured user
profile connected to cloud services, where every node is secured by a
policy which describes in what context that data should be available. The
requesting service forwards the context information gathered from the
users mobile phone, followed by a request, to the cloud. The cloud will
evaluate the context against relevant information from the user profile and
the security set in the user profile and authorize access.

The novel aspects of this thesis are as follows:

• Service scenario for context-aware personalized services.

• Applicability by the Microsoft OData framework.

• A policy engine supporting the semantically structured data, and
an implementation of the core components into a prototypical
implementation.

89

8.1 Conclusions

To reach the goal addressed in this thesis we created a travel scenario where
user get personalized information while being abroad, where information
about the user profile is stored semantically in a cloud service and protected
by policies. Depending on the users current context, service providers are
provided with parts of that users profile.

Our functional architecture consists of a combination of the mobile
phone as the identifier, public information screen as the interface for service
delivery, a protected cloud infrastructure carrying a context-aware user
profile and service provider entry, being able to deliver services according
to the context-aware profile.

The functional description has the novelty of implementing required
trust levels for the access of the user profile preferences, e.g. a trust level
in the area from 0.0 to 1.0, for the access of the information. Access to the
profile is only given if the context-aware trust are equal or greater than
the required security attribute, for accessing the information. We have
exemplified the context-aware trust through two people, Bob and Cathrine,
where Bob is a restrictive person and Cathrine is an open person. The
two users define their trust attributes, for example, Bob gives a security
attribute of 0.8 to his food preferences, while Cathrine gives a security
attribute of 0.3 to her food preferences. A trust level is composed by a
set of attributes, given by the user confidence in the current environment.
As an example, Norway is seen as a more trusted country with a high trust
level of 0.8, while Afghanistan has a low trust level of 0.3. The trust level
is enhanced by specific information of known places, like a hotel that has
been visited before, that increases or reduces the trust level based of that
situation. Thus our functional architecture compares the achieved trust
values for a certain location with the security attribute needed to access
parts of the the user profile and then gives the service provider access to
those preferences, for example a food supplier at Gardermoen may ask the
information on Bob and Cathrine, and as Bob is more restricted, he will
only get information on seafood will be presented, where as Cathrine will
get much more personalized information.

Our main focus of this thesis was on the implementation using
enterprise frameworks, though semantic data, reasoning, policies are well
known in the open source world. In an enterprise environment, based
on Microsoft OData for implementing context-aware authorization model,
the toolboxes are not present on the market, so this thesis has crated a
methodology and applied that methodology to create the context-aware
authorization model for personalized services.

The created proof-of-concept implementation for a context-aware au-
thorization framework consists of the following main components:

• OData

• Entity Framework

• XACML policy language

90

• XACML.NET policy engine

Our experience is that, though Microsoft provides framework for se-
mantic data representation, we have not found evidence for the successful
applicability of ontologies in the framework. Entity Framework provides
good support database abstraction, although it is restricted to database ter-
minology, resulting in complexity when semantic functionality is desired.
Our research shows that XACML is a flexible policy language, capable of
creating complex rules that is applicable to semantic resources, but has an
overhead of information for specifying simple rules. Our research and im-
plementation experience shows that a XACML policy engine framework
applicable to the .NET platform is non-existent, though the XACML.NET
policy engine, which is a work in progress, shows interest for such policies
in the enterprise market.

In an overall conclusion, this thesis has shown that the enterprise
framework is applicable to create context-aware and personalized services,
and we have demonstrated the core components being OData and XACML.

The next section is going to provide recommendations based on our
findings.

8.2 Recommendations

8.2.1 Lessons learned

Our evaluation after researching the topic of creating context-aware autho-
rization model for semantically structured data, focusing on enterprise so-
lutions is that we are concerned about the lack of available in the enterprise
world. We believe that the best approach is to use a hybrid solution con-
sisting both of Microsoft and Java technologies. There are no fully working
engine that is available on the .NET platform for evaluating these policies
and no concept of reasoning on their semantically structured data. For both
of these topics there are good open source tools available, which is contin-
uously improved by big companies such as Sun and IBM.

With our experience in this thesis believe that using these hybrid
solutions can be the best choice for addressing the goal of this thesis.

8.2.2 Inter working amongst semantic systems

Even if OData and RDF has different implementations, they have the same
goal, to expose data freely on the web with semantically structured data[2].
Structuring data in a semantic way means to make data accessible, where
a machiene can understand what the data actually is described in human-
readable form. This is done by exposing the data atomically into small
sets of data which links to other data and have it’s own distinct URI. What
this actually mean is that for example sushi has it’s own identifier and will
always mean the same type of object.

Both Microsoft and W3C has done extensive research on how they can
make these two standard collaborate[2][24]. Both of their implementation

91

describes on how to convert data retrieved from a SPARQL1 endpoint and
expose these as OData, however, none of these implementations, and our
research so far, explains hos to convert the other way around, namely
OData to RDF.

Figure 8.1: Flow diagram of how RDF can be converted into OData

As we can see from figure 8.1, the core of the research done by Microsoft
and W3C is to create a converter engine between the SPARQL endpoint and
OData. When a request is sent to an OData service the query will be sent to
a conversion engine that will run that query on the SPARQL endpoint. To
help the conversion engine on how this rewrite this query to SPARQL, it is
provided by a configuration file, which describes what OData query pars
have equivalents to SPARQL and vise versa. Figure 8.2 shows an example
of a configuration file entry. OData is represented in Atom XML, but is
strongly typed. This example shows how age is converted from RDF to
OData as a 32-bit integer.

Figure 8.2: Snipping from configuration file that describes how to convert
RDF into OData

When the query reaches the SPARQL endpoint, it will run the converted
query on the RDF triple store and return the data back to OData via the
converter engine. Both of these researches and implementations currently
supports basic RDF to OData conventions. There are several OData

1Query language used to query RDF stores

92

features that will also need to be implemented to make a complete and full-
working convention to OData. Among these are relationships, schematic
changes, but also features like filtering, paging and select.

8.3 Experience with OData implementations

We have throughout the thesis been working with institutions that has a
lot of data available they wish to expose to the public. Among these are
the Smithsonian National Museum of Natural History (NMNH), located
in Washington D.C, United States. They have been working on a cross-
field anthropology database for years and are currently working to publish
a front-end that can be used by other researches, students or the public
at large to gain access to their data in an intuitive way. While creating
this front-end they realize that every researcher works differently and may
be interested in other parts of the data that may not be exposed at first
glance or would like the data structured in a different kind of way. They do
however currently provide users with the ability to export a set of data from
this database, but there may still be large amounts of data that is needed
and considering these data may change on a daily basis, there is a need for
a more dynamic solution where other researchers can view these data in a
way they see fit.

We introduced the project leaders on this database to the OData
protocol. If they expose their data using this protocol, other researchers
has this ability, by either viewing the data in a browser, by writing URL’s
manually with their own queries or even by creating their own front end to
suit their needs. OData has extensive support for multiple programming
languages so that other developers can use the language they see fit, and
always get the latest data. Although in the start phase of the project,
NMNH is currently working on exposing their database using OData, and
have already spent an amount of hours preparing the database for such an
implementation.

8.4 Open issues and future work

8.4.1 Usability

We believe that the next natural step for development before our imple-
mentation can be put to use is a front end, an app, web page or others, the
user can interact with to manage their profiles. We are not going to go into
detail about our vision for this front end, but rather talk about usability. If
there were to be created a front end directly on top of our implementation,
we believe that there is a need for a simplification for delegating security
level to policies attached to statements in the user profile. We do not be-
lieve that it is intuitive for users to define a security level between 0.0 and
1.0. We can still keep true to this selection of security attributes, but we
think there is a need of simplifying the meaning of these numbers. Our
suggestions are Green, Yellow and Red.

93

An other suggestion concerning usability, and to some extend, security
as well. When users create policies that are attached to their data that
is by nature more secure, we would like the system to help the users by
"protecting them from themselves", meaning that if a user set security level
of 0.1 to information that is more vital, recommend system to react to
such actions. We suggest an initialization process when the users create
their profile, to either play a game, create example policies or answer
questions,to set their default security level concerning different topics, e.g.
food or credit card.

8.4.2 Security and data integrity

Our approach was focused on on creating a context-aware authorization for
semantically structured data. The implementation has focus on usability
of the framework components and not the evaluation of security, though
we are aware of the need of trust between services, certificates, and other
mechanisms such as firewalls and address restrictions.

An other aspect we consider to be an important part of our model is
data integrity for incoming requests to the cloud. The cloud should have
the ability to check that the user the service is requesting information for
is actually the requesting user, as well as checking that the contextual
information is correct. Thus far we have assumed that there is integrity
check on the data.

8.4.3 Reasoning

We mentioned earlier that when a user creates a profile, the user will
start an initialization process for this profile and that this profile should
expand based on reasoning. From our example the user will create a profile
and create some of their food preferences. When the requesting service
receives this information it should be able to, together with other open
data stores reason on what other food preferences this use might have.
OData however, does currently have, or as far as we know, will never
have, support for reasoning. Considering that it is unlikely for OData to
ever have reasoning capabilities, we think that the best option for achieving
this functionality is by performing this operation with a semantic reasoner,
like Jena2 or Pellet3. We will cover interworking between OData and the
Semantic Web in more detail in section 8.2.2.

2http://jena.apache.org/, accessed October 2013
3http://clarkparsia.com/pellet/, accessed October 2013

94

Bibliography

[1] G. D. Abowd, A. K. Dey, Brown P. J., Davies N., Smith M., and Steggles
P. Twoards a Better Understanding of Context and Context-Awareness,
volume 1707. Springer, 1999.

[2] Ahmed and Moore. Sparql / odata interop. Technical report, W3C,
2013.

[3] Anne Anderson. A comparison of two privacy policy languages: Epal
and xacml. 2005.

[4] Berners-Lee. Uniform resource identifier (uri): Generic syntax.
Network Working Group, 2005.

[5] Berners-Lee, Hendler, Lassila, and Ora. The semantic web. Scientific
american, 284(5):28–37, 2001.

[6] Tim Berners-Lee. Linked data. Electronic, August 2006.

[7] Bhatti, Bertino, and Ghafoor. A trust-based context-aware access
control model for web-services. Distributed and Parallel Databases -
DPD, 18:83–105, 2005.

[8] Rafae Bhatti, Elisa Bertino, and Arif Ghafoor. A trust-based context-
aware access control model for Web-services. In International Confer-
ence on Web Services, 2004.

[9] Rafae Bhatti, Daniel Sanz, Elisa Bertino, and Arif Ghafoor. A
Policy-Based Authorization Framework for Web Services: Integrating
XGTRBAC and WS-Policy. In International Conference on Web Services,
pages 447–454, 2007.

[10] Paul Biron, Ashok Malhotra, World Wide Web Consortium, et al. Xml
schema part 2: Datatypes. World Wide Web Consortium Recommendation
REC-xmlschema-2-20041028, 2004.

[11] Tim Bray, Jean Paoli, M. Sperberg-McQueen, Eve Maler, Yergeay, and
John Cowan. Extensible markup language (xml), August 2006.

[12] Marijke Coetzee and Jan H. P. Eloff. A Trust and Context Aware Access
Control Model for Web Services Conversations. 2007.

95

[13] Antonio Corradi, Rebecca Montanari, and Daniela Tibaldi. Context-
based access control for ubiquitous service provisioning. In Computer
Software and Applications Conference, 2004. COMPSAC 2004. Proceedings
of the 28th Annual International, pages 444–451. IEEE, 2004.

[14] Luca Costabello, Serena Villata, Nicolas Delaforge, Fabien Gandon,
et al. Linked data access goes mobile: Context-aware authorization
for graph stores. In LDOW-5th WWW Workshop on Linked Data on the
Web-2012, 2012.

[15] Anind K. Dey, Gregory D. Abowd, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Twoards a better understanding of context
and context-awareness. Lecture Notes in Computer Science, 1707:304–
307, 1999.

[16] Fielding, Irvine, Gettys, Mogul, Manister, Leach, and Berners-Lee.
Hypertext transfer protocol – http/1.1. Electronically, June 1999.

[17] Organization for the Advancement of Structured Information Stan-
dards. Open data protocol (odata). Electronically, November 2013.

[18] Gregorio and de hOra. The atom publishing protocol. Electronically,
October 2007 2007.

[19] Weili Han, Junjing Zhang, and Xiaobo Yao. Context-sensitive Access
Control Model and Implementation. In Conference on Computer and
Information Technology, pages 757–763, 2005.

[20] Heumann. Tips for writing good use cases. Transforming software and
systems delivery, May 2008.

[21] Junzhe Hu and Alfred C. Weaver. A Dynamic Context-Aware Security
Infrastructure for Distributed Healthcare Applications.

[22] Hulsenbosch, Salden, Bargh, Ebben, and Reitsma. Context sensitive
access control. Proceedings of the tenth ACM symposium on Access control
models and technologies, 1:111–119, 2005.

[23] JinYuan and Tong. Attributed based access control (abac) for web
services. In Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE
International Conference on, volume 1. IEEE Computer Society, 2005.

[24] Kerrin, Hausenblas, Pizzo, Viegas, and Wilson. Linking structured
data. Technical report, Microsoft, 2012.

[25] Devdatta Kulkarni and Anand Tripathi. Context-aware role-based
access control in pervasive computing systems. In Symposium on
Access Control Models and Technologies, pages 113–122, 2008.

[26] Sven Lachmund, Thomas Walter, Laurent Gomez, Laurent Bussard,
and Eddy Olk. Context-aware access control making access control
decisions based on context information. In Mobile and Ubiquitous

96

Systems-Workshops, 2006. 3rd Annual International Conference on, pages
1–8. IEEE, 2006.

[27] Oscar García Morchon and Klaus Wehrle. Modular context-aware
access control for medical sensor networks. In Symposium on Access
Control Models and Technologies, pages 129–138, 2010.

[28] M. Nottingham and R. Sayre. The atom syndication format. Electron-
ically, December 2005.

[29] Pung and Zhang. Web-services-based infrastructure for context-aware
applications. Pervasive Computing, IEEE, 3:66–74, 2004.

[30] Sara Radicati and Quoc Hoang. Microsoft exchange server and
outlook market analysis, 2012-2016. 2012.

[31] Arjmand Samuel, Arif Ghafoor, and Elisa Bertino. Context-Aware
Adaptation of Access-Control Policies. IEEE Internet Computing, 12:51–
54, 2008.

[32] Gerhard Skagstein. SystemutvSystem - fra kjernen og ut, fra skallet of inn,
volume 2005. Høyskoleforlaget, 2005.

[33] Henry S Thompson. Xml schema part 1: Structures second edition,
2004.

[34] Alessandra Toninelli, Rebecca Montanari, Lalana Kagal, and Ora
Lassila. A semantic context-aware access control framework for secure
collaborations in pervasive computing environments. In The Semantic
Web-ISWC 2006, pages 473–486. Springer, 2006.

[35] Alessandra Toninelli, Rebecca Montanari, Lalana Kagal, and Ora
Lassila. A semantic context-aware access control framework for secure
collaborations in pervasive computing environments. In The Semantic
Web-ISWC 2006, pages 473–486. Springer, 2006.

97

