Mobile Network Bottlenecks and future needs

UNIK9700 – 05/12/17 Georgios Patounas – gpatounas@simula.no

Outline

What does a mobile network do?

The Core Network

(((The Radio Access Network

C-RAN back-of-the-envelope

gpatounas@simula.no 05/12/17

Mobile Networks

- Connect devices (UE) with a PDN (Internet) and with each other
- Provide global coverage and mobility

Mobile Networks

Requirements are on the rise

gpatounas@simula.no 05/12/17

Requirements are on the rise

Source: GSMA Intelligence

gpatounas@simula.no 05/12/17

User-plane

Control-plane

- Establishment of connections
- Security
- Mobility
- QoS

Control-plane

gpatounas@simula.no 05/12/17

Core Network infrastructure

- Expensive to deploy, upgrade
- Few locations to cover nationwide areas
- Inflexible

Radio Access Network

- Thousands of Base Stations
- Ensures that UEs can connect to the network and use its services
- Part of any control operation, handovers, establishment of connections
- Management of the wireless medium and how the UEs use it

RAN needs to schedule the connected UEs

gpatounas@simula.no 05/12/17

RAN needs to schedule the connected UEs

- Several different ways to do that exist
- We need to schedule the transmissions in a way that provides acceptable QoS to all devices, fairness and high overall high throughput
- No perfect solution exists
- Better scheduling usually comes with higher overhead and complexity

RAN performs link adaptation, etc.

gpatounas@simula.no 05/12/17

NFV challenges: performance

NFV challenges: management

The current RAN is in need of major changes

- Current vision for 5G needs:
 - Higher throughput (up to 10 Gbps)
 - Higher UE density
 - Lower latency
 - And more...

Just do it?

Using best case LTE assumptions.

- 40db SNR
- 5x20 Mhz carriers
- Shannon capacity

$$C = \log_2 \left(1 + \frac{S}{N} \frac{1}{j} \right)$$

- We can get around 1.3 Gbps SISO
- With 4x4 MIMO we can get up to 5.2 Gbps
- With 8x8 MIMO we can get up to 10.4 Gbps

Spectral efficiency

- Shannon capacity with our great CQ is 13 b/s/Hz. The actual downlink spectral efficiency is much lower.
- LTE has a typical overhead of 20-25%

gpatounas@simula.no 05/12/17

Spectral efficiency

- Shannon capacity with our great CQ is 13 b/s/Hz. The actual downlink spectral efficiency is much lower.
- LTE has a typical overhead of 20-25%
- With some more realistic numbers, still fictional hardware, great channel quality and no contention for resources we need around 200MHz to get 10Gbps

So, we just need

- More antennas
- More spectrum
- Great channel quality
- Lower overhead

How do we do that?

- Plenty-full spectrum and feasible antennas are only available in higher frequencies
- Higher frequencies mean more eNBs are needed for adequate coverage and CQ
- More eNBs means more interference and more infrastructure to connect them
- Centralization of some of the functions and cheaper eNBs with Ethernet connections is needed

In conclusion, there is no magic solution

- Several known bottlenecks
- Flexibility is key
- New performance, management and cost issues arise
- Infrastructure and spectrum will need to be reconsidered to approach some of the ambitious goals set for 5G

Thank you.

References

[1]Y. Huo, X. Dong, and W. Xu, "5G Cellular User Equipment: From Theory to Practical Hardware Design," arXiv preprint arXiv:1704.02540, 2017.

[2]"wp-cloud-ran.pdf."

[3]"WhitePaper_C-RAN_for_5G_-_In_collab_with_Ericsson_SC_-_quotes_-_FINAL.PDF."

[4]"fact_sheet_lte.pdf."

[5]"Microsoft-PowerPoint-iCIRRUS-UniKent-5G-Architecture-1st-workshop.pdf."

[6]"12-10-01 spectral effieciency.pdf."

https://www.rcrwireless.com/20140509/diameter-signaling-controller-dsc/lte-mme-epc

https://sites.google.com/site/lteencyclopedia/lte-radio-link-budgeting-and-rf-planning

certain references are missing, please contact.