MOBILE BROADBAND

Ĭ

UNIK4230: Mobile Communications

Abul Kaosher abul.kaosher@nokia.com

Mobile Broadband

Materials used from:

- 1. Nokia Networks
- 2. LTE for UMTS. Evolution to LTE-Advanced. 2nd Edition. Harri Holma and Antti Toskala

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

Mobile broadband traffic more than doubles every year MOBILE Video traffic has overtaken everything else

Factors impacting MBB/LTE take off & competiveness BROADBAND

- Smart phones, low end MBB phones
- Sticks, tablets, laptops, Mi-Fi
- Subsidizing usage of 3G/LTE devices

- Voice, data, sms, devices, triple/quad play
- Converged fixed and mobile offering
- Content, email, navigation, security

Content & applications

- Own applications, services from Internet
- Partnering with local brands & device vendors
- Foster country specific killer apps

- Capacity, coverage, quality
- 6-sector, active antenna, site density, spectrum
- Small cells, offloading, traffic management

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

Introduction

HSPA technology and evolution

UMTS Air Interface technologies

UMTS Air interface is built based on two technological solutions

- WCDMA FDD
- WCDMA TDD

WCDMA – FDD is the more widely used solution

• FDD: Separate UL and DL frequency band

WCDMA – TDD technology is currently used in limited number of networks

• TDD: UL and DL separated by time, utilizing same frequency

Both technologies have own dedicated frequency bands

WCDMA Technology

UMTS & GSM Network Planning

CDMA principle - Chips & Bits & Symbols Bits (In this drawing, 1 bit = 8 Chips \rightarrow SF=8) +1 **Baseband Data** -1 Chip Chip +1 Spreading Code -1 +1 **Spread Signal** -1 Air Interface Despreading +1 -1 +1 Data -1

10 © Nokia Siemens Networks

Agenda

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

Introduction

HSPA technology and evolution

ns

HSPA+ radio performance basics

- HSDPA peak rate depends on adaptive modulation, coding and UE category
- BTS selects modulation and coding based on reported signal quality (affected by e.g. distance from BTS, load in neighboring cells and UE performance)

Dual Cell HSDPA and HSUPA

- DC-HSDPA is a Release 8 enhancement. It provides a method to aggregate two adjacent carriers in the downlink.
- Enables transmission of 2 adjacent carriers of 10MHz bandwidth to single terminal.
- The main reason behind DC-HSDPA, i.e. multi-carrier, is to improve resource utilization and therefore increase spectrum efficiency. This is achieved by having joint resource allocation, as well as load balancing across both carriers.

Dual Cell HSDPA and HSUPA

 DC-HSDPA can double data rate at low loading because the user can access the capacity of two carriers instead of just one. The relative benefit decreases when loading increases.

 There is still some capacity benefits at high load due to frequency domain scheduling and dynamic load balancing between carriers (if both carrier is not 100% loaded at all time).

MIMO Evolution

- Multi-antenna transmission and reception increases
 - peak data rates,
 - cell throughput and
 - cell edge data rates

Dual Cell vs MIMO

	Dual Carrier	MIMO	
Peak Rate	42Mbps	42Mbps	
mprovement in Spectral Efficiency 20% - Due to improved scheduling in the frequency domain and increased trunking gain.		10% - Since two antennas.	
Data Rate The gain is similar all Improvement over the cell area.		Largest gain close to Node B.	
Node B RFSingle PowerRequirementsAmplifier per sector.		Needs two Power Amplifiers per sector.	
UE RF Requirements	Possible with 1 antenna terminal.	2 antennas required.	

MOBILE BROADBAND

NSN

Multicarrier HSPA Evolution

3GPP Release 7:

UE can receive and transmit on single 5 MHz carrier

2 x 5 MHz

3GPP Release 10:

UE can receive four 5 MHz carriers

 $2 \times 5 MHz$

MOBILE BROADBAND

NSN

Multiband HSPA Evolution

3GPP Release 7:

18

UE can receive and transmit on single band

MOBILE BROADBAND

DC-HSPA on 2100, 900 and 2100+900 MHz (dual-band DC)

- DC-HSPA 42 Mbit/s device available currently in the market can support aggregation of two HSPA-carriers on the 2100 MHz band
- Technology-wise DC-HSPA on 900 MHz could be done but typically not included to the early devices/ chipset due lack of operator demand (not many operators that can free 900 for two HSPA-carriers)
- Devices capable for dual-band DC-HSPA 42 Mbit/s are expected earliest year 2013

Agenda

MOBILE BROADBAND

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

Introduction	
LTE Spectrum	
Radio Access Overview	
Core Network Overview	
Voice over LTE (VoLTE)	

Motivation and Targets for LTE

- Spectral efficiency 2 to 4 times more than with HSPA Rel-6
- Peak rates exceed 100 Mbps in downlink and 50 Mbps in uplink (which is 10 times more than HSPA Rel-6)
- Enable a round trip time of < 10 ms
- Packet switched optimized
- High level of mobility and security
- Optimized terminal power efficiency
- Frequency flexibility with allocations from below 1.5 MHz up to 20 MHz

Basic Concepts / Architecture

LTE / SAE introduces the mechanism to fulfill the requirements of a next generation mobile network

Flat Overall Architecture

- 2-node architecture
- IP routable transport architecture

Improved Radio Principles

- peak data rates [Mbps] 173 DL , 58 UL
- Scalable BW: 1.4, 3, 5, 10, 15, 20 MHz
- Short latency: 10 20 ms

New Core Architecture

- Simplified Protocol Stack
- Simple, more efficient QoS
- UMTS backward compatible security

Agenda

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

	Introduction
	LTE Spectrum
-	Radio Access Overview
	Core Network Overview
	Voice over LTE (VoLTE)

LTE spectrum & ecosystem

LTE FDD

- Early FDD LTE ecosystem (commercial networks)
 - → 2600 (Europe, APAC)
 → 2100 (Japan)
 → 1900 PCS (US)
 → 1800 (GSM refarming)
 - → 1700/2100 AWS
 - → 850
 - → 800 Digital Dividend
 - Opper 700 MHz, C
 - \rightarrow Lower 700 MHz, B/C (

(US)
(GSM refarming)
(NAM incl. Canada)
(South Korea)
(Europe, MEA)
(Verizon)
(AT&T)

TD-LTE

• Early TD-LTE ecosystem mainly building on

>	2300	(MEA, India, China, APAC, Russia)

\rightarrow	2600
	2000

(China, LatAM, Europe)

LTE FDD					
Band	MHz	Uplink MHz	Downlink MHz		
1	2x60	1920-1980	2110-2170	UMTS core	
2	2x60	1850-1910	1930-1990	US PCS	
3	2x75	1710-1785	1805-1880	GSM 1800	
4	2x45	1710-1755	2110-2155	NAM AWS	
5	2x25	824-849	869-894	850	
7	2x70	2500-2570	2620-2690	2600 FDD	
8	2x35	880-915	925-960	GSM 900	
9	2x35	1749-1784	1844-1879	Japan, Korea 1700	
10	2x60	1710-1770	2110-2170	US AWS extension.	
11	2x20	1427.9-1447.9	1475.9-1495.9	Japan 1500	
12	2x18	698-716	728-746	US	
13	2x10	777-787	746-756	Verizon	
14	2x10	788-798	758-768	US – Public Safety	
17	2x12	704-716	734-746	AT&T	
18	2x15	815-830	860-875	Japan – 800 (KDDI)	
19	2x15	830-845	875-890	Japan – 800 (DoCoMo)	
20	2x30	832-862	791-821	EU 800 DD, MEA	
21	2x15	1448-1463	1496-1511	Japan 1500	
22	2x80	3410-3490	3510-3590	3.5 GHz FDD	
23	2x20	2000-2020	2180-2200	US S-band	
24	2x34	1626.5-1660.5	1525-1559	US (LightSquared)	
25	2x65	1850-1915	1930-1995	US PCS extension (Sprint)	
26	2x35	814-849	859-894	850 extension (Korea-KT, Sprint)	
TD-L	ГЕ				
Band	MHz	Uplink MHz	Downlink MHz		
33	1x20	1900-1920	1900-1920	UMTS core – TDD	
34	1x15	2010-2025	2010-2025	UMTS core – TDD, China TD/SCDMA	
35	1x60	1850-1910	1850-1910	US (band 2 – TDD variant)	
36	1x60	1930-1990	1930-1990	US (band 2 – TDD variant)	
37	1x20	1910-1930	1910-1930	US PCS centre-gap	
38	1x50	2570-2620	2570-2620	China, LatAM, Europe	
39	1x40	1880-1920	1880-1920 China PHS		
40	1x100	2300-2400	2300-2400	MEA, India, China, Russia	
41	1x194	2496-2690	2496-2690	US (Clearwire)	
42	1x200	3400-3600	3400-3600	3.4/5 GHz – TDD	
43	1x200	3600-3800	3600-3800	3.7/8 GHz – TDD	

Source: TS 36.101; **commercialized bands**

Coverage – Low Band and FDD best for wide area LTE - FDD 800 MHz Example: LTE 800 Coverage (Germany)

Typical site coverage area in urban area 2600 TDD 2600 TDD 2600 FDD 1.0 2600 FDD 19 2100 2100 32 1.7 1800 1800 4.0 2.1 900 900 3.2 EU800 FU800 4.2 0.0 20 5.0 0.0 1.0 2.0 30 4.0 km2

Typical site coverage area in suburban area

30

1.5

8.0

95 %

8.8

-5

15

> 3 - timesmore coverage on 800 MHz

BS antenna height [m] MS antenna height [m] Standard Deviation [dB] Location Probability Slow Fading Margin [dB] Correction factor [dB] Indoor loss [dB]

- **Government regulation (USO):** -> specific rollout requirements
 - within 800 MHz spectrum license
- Service provided outside wireline-DSI areas

Coverage – Low Band and FDD best for wide area WCDMA/HSPA – FDD 900MHz

- Government regulation (USO):
 - -> provide access to 1 Mbps broadband for every household – either wireline or wireless
- Target date: July 1, 2010
- HSPA900 chosen in view of time-line and 800 MHz spectrum availability
- > 500 devices in all form-factors & price-points

3 – times more coverage on 900 MHz

26 © Nokia Siemens Networks

Coverage – Low Band and FDD The power of 700/800/900 MHz for urban indoor coverage

More bandwidth = Superior data rates across cell range LTE Downlink Bit Rates

- Interference Limited, Other Cells 100% Loaded

10 km (indicative range for 30m antennas)

28 © Nokia Siemens Networks

Practical Data Rate Evolution – End-user experience

Spectrum Resources – Europe

• Main LTE bands in Europe: 800, 1800 and 2600 MHz

Agenda

IntroductionIntroductionWCDMA/HSPA/HSPA+LTE SpectrumLTERadio Access OverviewLTE-AdvancedCore Network OverviewSummaryVoice over LTE (VoLTE)

Multiple Access Methods

Downlink - OFDM

Uplink – Single Carrier FDMA

OFDMA vs SC-FDMA

NSN

LTE Radio principles

Uplink:

36

SC-FDMA

	 Improved spectral efficiency 		
	 Reduced interference 		
OFDMA	 Very well suited for MIMO 		

- Power efficient uplink increasing battery lifetime
 - Improved cell edge performance by low peak to average ratio
 - Reduced Terminal complexity
- Enabling peak cell data rates of 173 Mbps DL and 58 Mbps in UL *
- Scalable bandwidth: 1.4 / 3 / 5 / 10 /15 / 20 MHz also allows deployment in lower frequency bands (rural coverage, refarming)
- Short latency: 10 20 ms **

E-UTRAN Node B (eNodeB)

eNodeB is the only node that controls all radio related functions:

- Acts as layer 2 bridge between UE and EPC
 - Termination point of all radio protocols towards UE
 - -Relaying data between radio connection and corresponding IP connectivity towards EPC
- Performs ciphering/deciphering of the UP data and IP header compression/decompression
- Responsible for Radio Resource Management (RRM)-
 - -allocating resources based on requests
 - -prioritizing and scheduling traffic according to required Quality of Service (QoS).

Mobility Management-

 controls and analyses radio signal level measurements by UE, makes similar measurement itself and based on those makes HO decision.

Agenda

Main EPS Standards: 23.401

- Defines EPS architectures for 3GPP accesses using GTP protocol (GTP on S5/S8)
 - One example is given below
- Defines role of MME, SGW and PGW
- Two GW configurations: standalone SGW and PGW, co-located SGW/PGW
- Defines high level procedures (mobility management, session management, interworking with existing accesses, etc.)

Non-roaming architecture for 3GPP accesses

3GPP R8 Architecture: Flat architecture for high efficiency

nsi

Core Technology Overview

Mobility Management Entity

- C-Plane Part
- Session & Mobility management
- Idle mode mobility management
- Paging
- AAA Proxy

Serving Gateway

- User plane anchor for mobility between the 2G/3G access system and the LTE access system.
- Resides in visited network in roaming cases
- Lawful Interception

Packet Data Network Gateway

- Gateway towards Internet/Intranets
- User plane anchor for mobility between 3GPP and non-3GPP access systems (HA).
- Charging Support
- Policy and Charging Enforcement (PCEF) *)
- Packet Filtering
- Lawful Interception

Agenda

IntroductionIntroductionWCDMA/HSPA/HSPA+LTE SpectrumLTERadio Access OverviewLTE-AdvancedCore Network OverviewSummaryVoice over LTE (VoLTE)

Why VoLTE – Operator view (DoCoMo)

Benefit for the operator

- Benefits for customers
 - Faster call set-up
 - Mobile broadband still available during voice call
 - Service quality better than OTT VoIP apps
 - Priority handling, SRVCC
 - Existing supplementary services are supported

Our philosophy behind: Maintain the same service quality as the existing 3G voice service to satisfy customer needs.

Comparison vs. OTT VoIP

Services	VoLTE	OTT VoIP Apps		
Use of E.164 Number	1	Limited	Limited to certain numbers/operators	
Emergency Call	1	X		
CLIP/CLIR	1	×	Originating number not always displayed	
Priority Calls	1	X		
Voice mails	1	1	Supported by certain	
Call Diversion	1	1	app e.g. Skype	
Other supplementary services	1	X		

... however, DoCoMo has not launched VoLTE yet.

Potential voice evolution steps in LTE

LTE used for high speed packet data access only

Operator voice service provided over CS network

Fallback to CS voice

- LTE network is used for data only
- Terminal is simultaneously registered to both LTE and 2G/3G CS network
- Voice calls are initiated and received over CS network
- Single radio Voice Call Continuity (VCC)
 - Operator provides VoIP over LTE
 - IMS acts as control machinery
 - Voice calls can be handed over to CS network

All-IP network

- Operator provides VoIP over LTE
- IMS acts as control machinery
- Voice calls can be handed over to other packet switched networks

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

nsn

LTE-Advanced Pushes Data Rates Beyond 1 Gbps

NSN

The LTE-Advanced toolbox for delivering more data efficiently to wide areas and hotspots

LTE-Advanced: Carrier aggregation More dynamic spectrum usage for better user experience

Peak data rate addition

- enables competitive peak data rates on non-contiguous spectrum
- Mitigates the challenge of fragmented spectrum

- Ultrafast resource allocation by scheduler instead of handover
- Users dynamically get the best resources of aggregated carrier
- Higher average data rates

- Will be specified in **3GPP Rel.11** or later
- Most operators have significantly less spectrum for LTE
- Even HD streaming services demand less than 20Mbps

Relevant scenarios under standardisation (3GPP Rel.10/11)

nsn

LTE Advanced: Band Combinations with initial focus

- Downlink carrier aggregation for 2 component carriers
- Up to 40 MHz combined bandwidth
- 36 combinations in total
- 13 combinations for North America
- 8 combinations for Japan
- 5 combinations for Korea
- Part of Release 11 combinations still under work
- Release 12 combinations planned for next year
- No FDD + TDD aggregation

Overview - Mobile Broadband Downlink peak data rate evolution

Introduction

WCDMA/HSPA/HSPA+

LTE

LTE-Advanced

Summary

Summary (1/3)

WCDMA/HSPA/HSPA+

- Strong momentum and growth in Mobile Broadband with terminals, network technology and applications
- WCDMA has both FDD (widely used) and TDD variant with FDD using 5+5 MHz and TDD 5 MHz as single carrier
- HSPA/HSPA+ is a mature technology with broad ecosystem support, which will further evolve and will remain dominant technology for many years to come
- Carrier aggregation and MIMO pushes the peak data rates and cell throughput

Summary (2/3)

LTE

- Motivation of LTE is need for higher peak data rate, spectral efficiency, less round trip delay, packet optimized network, high degree of mobility and spectrum flexibility
- LTE has both FDD and TDD variant with frequency allocation flexibility with 1.4, 3, 5, 10, 15 and 20 MHz spectrum
- LTE frequency bands for Europe are 2600 (capacity), 1800 (capacity) and 800 (coverage) MHz
- LTE uses OFDMA in DL and SC-FDMA UL for multiple access technology. OFDMA in DL minimizes receiver complexity while SC-FDMA improves battery life time in receiver
- LTE is packet oriented flat network with minimum no. of nodes- only eNodeB in access and MME, SAE-GW (S-GW/P-GW) in core networks. (additionally, HLR/HSS, PCRF and IMS is required in core)
- Voice in LTE is accomplished by CS Fallback (initially) and SR-VCC (later).

Summary (3/3)

LTE-Advanced

- LTE-A in Rel-10 adds several enhancements in LTE
- Improvements in peak and average data rates using carrier aggregation, increased number of antennas and advanced antenna technologies
- Further improvements by use of relay and interference management
- LTE-A with Rel-10 fulfills and exceeds requirements for IMT-Advanced
- LTE-A can achieve peak data rates as high as 3 Gbps in DL and 1.5 Gbps in UL direction with 100 MHz spectrum

Nokia LTE R&D Research and publications bringing the industry forward

