Difference between revisions of "B1-Free Space Propagation"

From its-wiki.no
Jump to: navigation, search
Line 1: Line 1:
==⌘ Background: Wave Propagation ==
+
 
 +
=⌘ Maxwell's Equation in a source free environment =
 +
Source free environment and free space:
 +
 
 +
<math> \nabla \cdot \vec E = 0  \qquad \qquad \qquad \ \ (1) </math>
 +
 
 +
<math>\nabla \times \vec E = -\frac{\partial}{\partial t} \vec B \qquad \qquad (2) </math>
 +
 
 +
<math>  \nabla \cdot \vec B = 0 \qquad \qquad \qquad \ \ (3) </math>
 +
 
 +
<math> \nabla \times \vec B = \mu_0 \epsilon_0 \frac{\partial}{\partial t} \vec E  \qquad \ \ \ (4) </math>
 +
 
 +
where div is a scalar function<br />
 +
<math>\mbox{div}\,\vec v = {\partial v_x \over \partial x} + {\partial v_y \over \partial y} + {\partial v_z \over \partial z} = \nabla \cdot \vec v </math><br />
 +
and curl is a vector function <br />
 +
<math>\mbox{curl}\;\vec v = \left( {\partial v_z \over \partial y} - {\partial v_y \over \partial z} \right) \mathbf{i} + \left( {\partial v_x \over \partial z} - {\partial v_z \over \partial x} \right) \mathbf{j} + \left( {\partial v_y \over \partial x} - {\partial v_x \over \partial y} \right) \mathbf{k} = \nabla \times \vec v</math>
 +
 
 +
[Source: Wikipedia]
 +
 
 +
 
 +
 
 +
=⌘ Wave equation =
 +
Taking the curl of Maxwell's equation
 +
 
 +
<math>\nabla \times \nabla \times \vec E = -\frac{\partial } {\partial t} \nabla \times \vec B = -\mu_0 \varepsilon_0 \frac{\partial^2 \vec E }  {\partial t^2} </math>
 +
 
 +
<math>\nabla \times \nabla \times \vec B = \mu_0 \varepsilon_0 \frac{\partial } {\partial t} \nabla \times \vec E = -\mu_o \varepsilon_o \frac{\partial^2 \vec B}{\partial t^2} </math>
 +
 
 +
yields the wave equation:<br />
 +
<math>{\partial^2 \vec E \over \partial t^2} \ - \  {c_0}^2 \cdot \nabla^2 \vec E  \ \ = \ \ 0 </math>
 +
 
 +
<math>{\partial^2 \vec B \over \partial t^2} \ - \  {c_0}^2 \cdot \nabla^2 \vec B  \ \ = \ \ 0 </math>
 +
 
 +
with <math> c_0 = { 1 \over \sqrt{ \mu_0 \varepsilon_0 } } = 2.99792458 \times 10^8 </math> m/s
 +
 
 +
[Source: Wikipedia]
 +
 
 +
=⌘ Homogeneous electromagnetic wave =
 +
single frequency
 +
 
 +
<math>\vec E(\vec r) = E_0 e^{j(\omega t  - \vec k \cdot \vec r) }  </math>,
 +
 
 +
<math>\vec B(\vec r) = B_0 e^{j(\omega t - \vec k \cdot \vec r) }  </math>,
 +
 
 +
[Source: Wikipedia]
 +
 
 +
where
 +
* <math>\vec r = (x, y, z) </math> and  <math>\vec k = (k_x, k_y, k_z) </math> <span style="color:#000B80">so?
 +
* <math>j \, </math> is the imaginary unit
 +
* <math>\omega = 2 \pi f \,  </math> is the angular frequency, [rad/s]
 +
* <math> f \,</math> is the frequency [1/s]
 +
* <math>  e^{j \omega t} = \cos(\omega t) + j \sin(\omega t)  </math> is Euler's formula
 +
 
 +
with <math>c = { c_0 \over n } =  { 1 \over \sqrt{ \mu \varepsilon } } </math> and
 +
<math>n = \sqrt{ \mu \varepsilon \over  \mu_0 \varepsilon_0  </math>
 +
 
 +
 
 +
 
 +
 
 +
==⌘ Comments and tasks ==
 +
 
 +
* What is the difference between a static and a dynamic field
 +
* Develop the relations for a plain wave
 +
 
 +
 
 +
* Assume a plane wave: <math>E_x, H_y</math>. Show that <math>\frac{E_x}{H_y}=Z_0 = \sqrt{\mu_0/\varepsilon_0}</math>
 +
 
  
 
[[File:f3-8.png|450px|right|Calculation of a plane wave, proove that Z_0 = ... = E_x/H_y]]
 
[[File:f3-8.png|450px|right|Calculation of a plane wave, proove that Z_0 = ... = E_x/H_y]]

Revision as of 10:29, 21 September 2014

⌘ Maxwell's Equation in a source free environment

Source free environment and free space:

where div is a scalar function

and curl is a vector function

[Source: Wikipedia]


⌘ Wave equation

Taking the curl of Maxwell's equation

yields the wave equation:

with m/s

[Source: Wikipedia]

⌘ Homogeneous electromagnetic wave

single frequency

,

,

[Source: Wikipedia]

where

  • and so?
  • is the imaginary unit
  • is the angular frequency, [rad/s]
  • is the frequency [1/s]
  • is Euler's formula

with and



⌘ Comments and tasks

  • What is the difference between a static and a dynamic field
  • Develop the relations for a plain wave


  • Assume a plane wave: . Show that


Calculation of a plane wave, proove that Z_0 = ... = E_x/H_y


Cylindrical, plane and spherical wave

⌘ Task: Plane wave propagation

Assume a plane wave: . Show that

What is the relation between a plane wave and an omnidirectional wave?


⌘ Free space propagation

develop propagation equation, see (http://www.antenna-theory.com/basics/friis.php)

Power received in an area in a distance R from transmitter:

  • area of a sphere is
  • power transmitted from isotropic antenna is
  • antenna area of receiver is
  • power received in A_r = P_r

thus

  • convert into dB
  • provide examples for f = 10 MHz, 1 GHz, 100 GHz
  • discuss influences on radiation pattern

How much is 0 dB_m and 10 dB_m?

  • Convert dBm to mW is: mW = 10^(x/10), x = number of dBm
  • Convert mW to dBm is: dBm = 10*log10(y), y = number of mW

So you get:

  • 0 dBm = 10^(0/10) = 1 mW
  • 10 dBm = 10^(10/10) = 10 mW


Free space attenuation

⌘Comments

F3-11.png Free space propagation from a transmit (t) to a receive (r) station.

FreeSpaceAttenuation.png

Calculation of free space attenuation. Note the increased free-space attenuation of approx 5 dB from 900 to 1800 Unik/MHz, and a further increase of 3 dB from 1800 (GSM 1800) to 2450 Unik/MHz (802.11b). Note also that increasing the distance by a factor of 10 will increase the power requirements by 20 dB.

Free space propagation Calculation: http://spreadsheets.google.com/pub?key=p0EyjWrbirGKJXK43uluJfg