B1-Free Space Propagation

From its-wiki.no
Revision as of 10:08, 10 October 2014 by Josef.Noll (Talk | contribs)

Jump to: navigation, search
Building .... Networks
History, Now and Future
History
Pioneers: Maxwell, Hertz,...
1G, 2G,... 5G networks
Frequencies and Standards
Future Challenges
A-Basics of Communication
Electromagnetic Signals
Radio Communication Principles
Digital communication: Signal/Noise Ratio
Signal strength and Capacity: Shannon
B-Antennas and Propagation
Free Space Propagation
Antennas, Gain, Radiation Pattern
Multipath Propagation, Reflection, Diffraction
Attenuation, Scattering
Interference and Fading (Rayleigh, Rician, …)
Mobile Communication dependencies
C-Propagation models
Environments (indoor, outdoor to indoor, vehicular)
Outdoor (Lee, Okumura, Hata, COST231 models)
Indoor (One-slope, multiwall, linear attenuation)
D-System Comparison
Proximity: RFID, NFC
Short Range: ZigBee, Bluetooth, ANT+,...
WLAN/Wifi/802.11...
Mobile: GSM, UMTS, IMT-A (WiMAX, LTE)
E-Mobility
Mobile Network mobility
IP mobility
F-Network Building
5G and Future Networks
5G Heterogeneous Networks
Basic Internet
Video Distribution Networks
Coverage simulations
Coverage simulations
Traffic simulations
Network Capacity simulations
Building .... Networks

⌘ Maxwell's Equation in a source free environment

Source free environment and free space:

where div is a scalar function

and curl is a vector function

[Source: Wikipedia]


⌘ Wave equation

Taking the curl of Maxwell's equation

yields the wave equation:

with m/s

[Source: Wikipedia]

⌘ Homogeneous electromagnetic wave

single frequency

,

,

[Source: Wikipedia]

where

  • and so?
  • is the imaginary unit
  • is the angular frequency, [rad/s]
  • is the frequency [1/s]
  • is Euler's formula

with and



⌘ Comments and tasks

  • What is the difference between a static and a dynamic field
  • Develop the relations for a plain wave


  • Assume a plane wave: . Show that


Calculation of a plane wave, proove that Z_0 = ... = E_x/H_y


Cylindrical, plane and spherical wave

Question: I still don't understand the propagation equation

⌘ Task: Plane wave propagation

Assume a plane wave: . Show that

What is the relation between a plane wave and an omnidirectional wave?


⌘ Free space propagation

develop propagation equation, see (http://www.antenna-theory.com/basics/friis.php)

Power received in an area in a distance R from transmitter:

  • area of a sphere is
  • power transmitted from isotropic antenna is
  • antenna area of receiver is
  • power received in A_r = P_r

thus

  • convert into dB
  • provide examples for f = 10 MHz, 1 GHz, 100 GHz
  • discuss influences on radiation pattern

How much is 0 dB_m and 10 dB_m?

  • Convert dBm to mW is: mW = 10^(x/10), x = number of dBm
  • Convert mW to dBm is: dBm = 10*log10(y), y = number of mW

So you get:

  • 0 dBm = 10^(0/10) = 1 mW
  • 10 dBm = 10^(10/10) = 10 mW


Free space attenuation

⌘Comments

F3-11.png Free space propagation from a transmit (t) to a receive (r) station.

FreeSpaceAttenuation.png

Calculation of free space attenuation. Note the increased free-space attenuation of approx 5 dB from 900 to 1800 Unik/MHz, and a further increase of 3 dB from 1800 (GSM 1800) to 2450 Unik/MHz (802.11b). Note also that increasing the distance by a factor of 10 will increase the power requirements by 20 dB.

Have in mind that normal communication is always worse than the "ideal" free space communication. You have shadowing, reflections, interference, and other influences increasing the path loss. An example is the Bluetooth communication between your mobile phone and your headset, where your body absorbs energy and shadows for direct communication.

Free space propagation Calculation: http://spreadsheets.google.com/pub?key=p0EyjWrbirGKJXK43uluJfg